Universal adversarial perturbations

被引:1212
|
作者
Moosavi-Dezfooli, Seyed-Mohsen [1 ]
Fawzi, Alhussein [1 ]
Fawzi, Omar [2 ]
Frossard, Pascal [1 ]
机构
[1] Ecole Polytech Fed Lausanne, Lausanne, Switzerland
[2] Univ Lyon, ENS Lyon, CNRS, UCBL,INRIA,LIP,UMR 5668, Lyon, France
关键词
D O I
10.1109/CVPR.2017.17
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Given a state-of-the-art deep neural network classifier, we show the existence of a universal (image-agnostic) and very small perturbation vector that causes natural images to be misclassified with high probability. We propose a systematic algorithm for computing universal perturbations, and show that state-of-the-art deep neural networks are highly vulnerable to such perturbations, albeit being quasi-imperceptible to the human eye. We further empirically analyze these universal perturbations and show, in particular, that they generalize very well across neural networks. The surprising existence of universal perturbations reveals important geometric correlations among the high-dimensional decision boundary of classifiers. It further outlines potential security breaches with the existence of single directions in the input space that adversaries can possibly exploit to break a classifier on most natural images.(1)
引用
下载
收藏
页码:86 / 94
页数:9
相关论文
共 50 条
  • [1] Steganographic universal adversarial perturbations
    Din, Salah Ud
    Akhtar, Naveed
    Younis, Shahzad
    Shafait, Faisal
    Mansoor, Atif
    Shafique, Muhammad
    PATTERN RECOGNITION LETTERS, 2020, 135 : 146 - 152
  • [2] Defense against Universal Adversarial Perturbations
    Akhtar, Naveed
    Liu, Jian
    Mian, Ajmal
    2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 3389 - 3398
  • [3] Universal adversarial perturbations generative network
    Zheng Wang
    Yang Yang
    Jingjing Li
    Xiaofeng Zhu
    World Wide Web, 2022, 25 : 1725 - 1746
  • [4] Universal adversarial perturbations generative network
    Wang, Zheng
    Yang, Yang
    Li, Jingjing
    Zhu, Xiaofeng
    WORLD WIDE WEB-INTERNET AND WEB INFORMATION SYSTEMS, 2022, 25 (04): : 1725 - 1746
  • [5] Universal adversarial perturbations against object detection
    Li, Debang
    Zhang, Junge
    Huang, Kaiqi
    PATTERN RECOGNITION, 2021, 110
  • [6] Universal Adversarial Perturbations for Speech Recognition Systems
    Neekhara, Paarth
    Hussain, Shehzeen
    Pandey, Prakhar
    Dubnov, Shlomo
    McAuley, Julian
    Koushanfar, Farinaz
    INTERSPEECH 2019, 2019, : 481 - 485
  • [7] Universal adversarial examples and perturbations for quantum classifiers
    Weiyuan Gong
    Dong-Ling Deng
    National Science Review, 2022, 9 (06) : 48 - 55
  • [8] Universal adversarial examples and perturbations for quantum classifiers
    Gong, Weiyuan
    Deng, Dong-Ling
    NATIONAL SCIENCE REVIEW, 2022, 9 (06)
  • [9] Learning Universal Adversarial Perturbations with Generative Models
    Hayes, Jamie
    Danezis, George
    2018 IEEE SYMPOSIUM ON SECURITY AND PRIVACY WORKSHOPS (SPW 2018), 2018, : 43 - 49
  • [10] Jacobian Regularization for Mitigating Universal Adversarial Perturbations
    Co, Kenneth T.
    Rego, David Martinez
    Lupu, Emil C.
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2021, PT IV, 2021, 12894 : 202 - 213