Fast-ion orbit analysis in Thailand Tokamak-1

被引:4
|
作者
Paenthong, Worathat [1 ]
Wisitsorasak, Apiwat [1 ,2 ]
Sangaroon, Siriyaporn [3 ]
Promping, Jiraporn [4 ]
Ogawa, Kunihiro [5 ,6 ]
Isobe, Mitsutaka [5 ,6 ]
机构
[1] King Mongkuts Univ Technol Thonburi, Fac Sci, Dept Phys, Bangkok, Thailand
[2] King Mongkuts Univ Technol Thonburi, Fac Sci, Ctr Excellence Theoret & Computat Sci, Bangkok, Thailand
[3] Mahasarakham Univ, Dept Phys, Maha Sarakham, Thailand
[4] Thailand Inst Nucl Technol, Bangkok, Thailand
[5] Natl Inst Fus Sci, Toki, Japan
[6] Grad Univ Adv Studies, SOKENDAI, Toki, Japan
关键词
Thailand Tokamak-1; Fast ions; Banana orbit; Trapped and passing particles;
D O I
10.1016/j.fusengdes.2022.113254
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
Thailand Tokamak-1 (TT-1) will be a small research tokamak being operated by the Thailand Institute of Nuclear Technology (TINT) in Nakhonnayok province, Thailand. The device partly uses the infrastructure of the former HT-6M alongside new hardware. Auxiliary heating sources, such as ion cyclotron range of frequency (ICRH) and/ or neutral beam injection (NBI), maybe also included in subsequent operations. This study aims to investigate the characteristics and behavior of fast ions produced by NBI heating in various operation scenarios. This work employs the collisionless Lorentz-orbit (LORBIT) code for simulating the motion of ions in the TT-1. When a hydrogen ion (H+) with an energy of 20 keV travels in the plasma with the plasma current of 100 kA, the toroidal magnetic field of 1.0 T, the average Larmor radius is found to approximately be 0.48 cm for a passing transit particle and 2.17 cm for a trapped particle. The Larmor radius reduces as the plasma current is increased or a stronger magnetic field is used. Furthermore, when the ion has pitch angles in the range of 85 degrees-100 degrees, the ion orbit clearly demonstrates a banana shape with a width and height of 7.0 and 18.8 cm, respectively. The size of the banana orbit shows an inverse correlation with the plasma current. In the last part of this work, we investigate the motion of ions that had initial positions along the paths of a co-current and counter-current NBI. It is shown that the number of lost ions can be reduced if the initial radial positions of the ions are in the range of 0.64-0.68 m.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Aspects of fast-ion dosimetry
    Bichsel, H
    Hiraoka, T
    Omata, K
    RADIATION RESEARCH, 2000, 153 (02) : 208 - 219
  • [22] A rotary and reciprocating scintillator based fast-ion loss detector for the MAST-U tokamak
    Rivero-Rodriguez, J. F.
    Garcia-Munoz, M.
    Martin, R.
    Galdon-Quiroga, J.
    Ayllon-Guerola, J.
    Akers, R. J.
    Buchanan, J.
    Croft, D.
    Garcia-Vallejo, D.
    Gonzalez-Martin, J.
    Harvey, D.
    McClements, K. G.
    Rodriguez-Ramos, M.
    Sanchis, L.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2018, 89 (10):
  • [23] Development of the scintillator-based probe for fast-ion losses in the HL-2A tokamak
    Zhang, Y. P.
    Liu, Yi
    Luo, X. B.
    Isobe, M.
    Yuan, G. L.
    Liu, Y. Q.
    Hua, Y.
    Song, X. Y.
    Yang, J. W.
    Li, X.
    Chen, W.
    Li, Y.
    Yan, L. W.
    Song, X. M.
    Yang, Q. W.
    Duan, X. R.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2014, 85 (05):
  • [24] Fast-ion losses due to high-frequency MHD perturbations in the ASDEX upgrade tokamak
    Garcia-Munoz, M.
    Fahrbach, H. -U.
    Guenter, S.
    Igochine, V.
    Mantsinen, M. J.
    Maraschek, M.
    Martin, P.
    Piovesan, P.
    Sassenberg, K.
    Zohm, H.
    PHYSICAL REVIEW LETTERS, 2008, 100 (05)
  • [25] Integrated tokamak modelling with the fast-ion Fokker-Planck solver adapted for transient analyses
    Toma, M.
    Hamamatsu, K.
    Hayashi, N.
    Honda, M.
    Ide, S.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2015, 57 (09)
  • [26] Conceptual design of a fast-ion D-alpha diagnostic on experimental advanced superconducting tokamak
    Huang, J.
    Heidbrink, W. W.
    Wan, B.
    von Hellermann, M. G.
    Zhu, Y.
    Gao, W.
    Wu, C.
    Li, Y.
    Fu, J.
    Lyu, B.
    Yu, Y.
    Shi, Y.
    Ye, M.
    Hu, L.
    Hu, C.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2014, 85 (11):
  • [27] Measurement of the passive fast-ion D-alpha emission on the NSTX-U tokamak
    Hao, G. Z.
    Heidbrink, W. W.
    Liu, D.
    Podesta, M.
    Stagner, L.
    Bell, R. E.
    Bortolon, A.
    Scotti, F.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2018, 60 (02)
  • [28] Fast-ion orbit origin of neutron emission spectroscopy measurements in the JET DT campaign
    Jarleblad, H.
    Stagner, L.
    Eriksson, J.
    Nocente, M.
    Kirov, K.
    Rud, M.
    Schmidt, B. S.
    Maslov, M.
    King, D.
    Keeling, D.
    Maggi, C.
    Garcia, J.
    Lerche, E. A.
    Mantica, P.
    Dong, Y.
    Salewski, M.
    NUCLEAR FUSION, 2024, 64 (02)
  • [29] Fast-ion redistribution due to sawtooth crash in the TEXTOR tokamak measured by collective Thomson scattering
    Nielsen, S. K.
    Bindslev, H.
    Salewski, M.
    Burger, A.
    Delabie, E.
    Furtula, V.
    Kantor, M.
    Korsholm, S. B.
    Leipold, F.
    Meo, F.
    Michelsen, P. K.
    Moseev, D.
    Oosterbeek, J. W.
    Stejner, M.
    Westerhof, E.
    Woskov, P.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2010, 52 (09)
  • [30] Scintillator based detector for fast-ion losses induced by magnetohydrodynamic instabilities in the ASDEX upgrade tokamak
    Garcia-Munoz, M.
    Fahrbach, H. -U.
    Zohm, H.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2009, 80 (05):