A Generic Acceleration Framework for Stochastic Composite Optimization

被引:0
|
作者
Kulunchakov, Andrei [1 ]
Mairal, Julien [1 ]
机构
[1] Univ Grenoble Alpes, INRIA, CNRS, Grenoble INP,UK, F-38000 Grenoble, France
基金
欧洲研究理事会;
关键词
APPROXIMATION ALGORITHMS;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we introduce various mechanisms to obtain accelerated first-order stochastic optimization algorithms when the objective function is convex or strongly convex. Specifically, we extend the Catalyst approach originally designed for deterministic objectives to the stochastic setting. Given an optimization method with mild convergence guarantees for strongly convex problems, the challenge is to accelerate convergence to a noise-dominated region, and then achieve convergence with an optimal worst-case complexity depending on the noise variance of the gradients. A side contribution of our work is also a generic analysis that can handle inexact proximal operators, providing new insights about the robustness of stochastic algorithms when the proximal operator cannot be exactly computed.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] OPTIMAL STOCHASTIC APPROXIMATION ALGORITHMS FOR STRONGLY CONVEX STOCHASTIC COMPOSITE OPTIMIZATION I: A GENERIC ALGORITHMIC FRAMEWORK
    Ghadimi, Saeed
    Lan, Guanghui
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2012, 22 (04) : 1469 - 1492
  • [2] A hybrid stochastic optimization framework for composite nonconvex optimization
    Quoc Tran-Dinh
    Pham, Nhan H.
    Phan, Dzung T.
    Nguyen, Lam M.
    [J]. MATHEMATICAL PROGRAMMING, 2022, 191 (02) : 1005 - 1071
  • [3] A hybrid stochastic optimization framework for composite nonconvex optimization
    Quoc Tran-Dinh
    Nhan H. Pham
    Dzung T. Phan
    Lam M. Nguyen
    [J]. Mathematical Programming, 2022, 191 : 1005 - 1071
  • [4] MURANA: A Generic Framework for Stochastic Variance-Reduced Optimization
    Condat, Laurent
    Richtarik, Peter
    [J]. MATHEMATICAL AND SCIENTIFIC MACHINE LEARNING, VOL 190, 2022, 190
  • [5] Proxsarah: An efficient algorithmic framework for stochastic composite nonconvex optimization
    Pham, Nhan H.
    Nguyen, Lam M.
    Phan, Dzung T.
    Tran-Dinh, Quoc
    [J]. Journal of Machine Learning Research, 2020, 21
  • [6] ProxSARAH: An Efficient Algorithmic Framework for Stochastic Composite Nonconvex Optimization
    Pham, Nhan H.
    Nguyen, Lam M.
    Phan, Dzung T.
    Quoc Tran-Dinh
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2020, 21
  • [7] Estimate sequences for stochastic composite optimization: Variance reduction, acceleration, and robustness to noise
    Kulunchakov, Andrei
    Mairal, Julien
    [J]. Journal of Machine Learning Research, 2020, 21
  • [8] Estimate Sequences for Stochastic Composite Optimization: Variance Reduction, Acceleration, and Robustness to Noise
    Kulunchakov, Andrei
    Mairal, Julien
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2020, 21
  • [9] A generic optimization framework for resilient systems
    Pfetsch, Marc E.
    Schmitt, Andreas
    [J]. OPTIMIZATION METHODS & SOFTWARE, 2023, 38 (02): : 356 - 385
  • [10] Adaptive Stochastic Optimization: A Framework for Analyzing Stochastic Optimization Algorithms
    Curtis, Frank E.
    Scheinberg, Katya
    [J]. IEEE SIGNAL PROCESSING MAGAZINE, 2020, 37 (05) : 32 - 42