Global stabilization of periodic orbits using a proportional feedback control with pulses

被引:25
|
作者
Braverman, Elena [2 ]
Liz, Eduardo [1 ]
机构
[1] Univ Vigo, Dept Matemat Aplicada 2, ETSE Telecomun, Vigo 36310, Spain
[2] Univ Calgary, Dept Math, Calgary, AB T2N 1N4, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Chaos control; Proportional feedback; Population model; Periodic orbit; Global attractor; POPULATION-MODELS; CHAOS; SIZE; MAPS;
D O I
10.1007/s11071-011-0160-x
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
We investigate the stabilization of periodic orbits of one-dimensional discrete maps by using a proportional feedback method applied in the form of pulses. We determine a range of the parameter mu values representing the strength of the feedback for which all positive solutions of the controlled equation converge to a periodic orbit. An important feature of our approach is that the required assumptions for which our results hold are met by a general class of maps, improving in this way some previous results. We discuss the applicability of our scheme to some models of population dynamics, and give numerical simulations to illustrate our analytical results.
引用
收藏
页码:2467 / 2475
页数:9
相关论文
共 50 条
  • [1] Global stabilization of periodic orbits using a proportional feedback control with pulses
    Elena Braverman
    Eduardo Liz
    [J]. Nonlinear Dynamics, 2012, 67 : 2467 - 2475
  • [2] On optimal stabilization of periodic orbits via time delayed feedback control
    Basso, M
    Genesio, R
    Giovanardi, L
    Tesi, A
    Torrini, G
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1998, 8 (08): : 1699 - 1706
  • [3] Stabilization of Long-Period Periodic Orbits Using Time-Delayed Feedback Control
    Postlethwaite, Claire M.
    [J]. SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2009, 8 (01): : 21 - 39
  • [4] Stabilization of unstable periodic orbits for discrete time chaotic systems by using periodic feedback
    Morgül, Ö
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2006, 16 (02): : 311 - 323
  • [5] Stabilization of unstable steady states and periodic orbits in an electrochemical system using delayed-feedback control
    Parmananda, P
    Madrigal, R
    Rivera, M
    Nyikos, L
    Kiss, IZ
    Gáspár, V
    [J]. PHYSICAL REVIEW E, 1999, 59 (05): : 5266 - 5271
  • [6] Motion planning and feedback stabilization of periodic orbits for an acrobot
    Shiriaev, A
    Sandberg, A
    Canudas-De-Wit, C
    [J]. 2004 43RD IEEE CONFERENCE ON DECISION AND CONTROL (CDC), VOLS 1-5, 2004, : 290 - 295
  • [7] On the stabilization of periodic orbits for discrete time chaotic systems by using scalar feedback
    Morgul, Oemer
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2007, 17 (12): : 4431 - 4442
  • [8] External feedback control of chaos using approximate periodic orbits
    Yagasaki, K
    Kumagai, M
    [J]. PHYSICAL REVIEW E, 2002, 65 (02):
  • [9] FEEDBACK STABILIZATION OF DISPLACED PERIODIC ORBITS: APPLICATION TO BINARY ASTEROID
    Simo, Jules
    McInnes, Colin R.
    [J]. SPACEFLIGHT MECHANICS 2012, 2012, 143 : 419 - 433
  • [10] Feedback stabilization of displaced periodic orbits: Application to binary asteroids
    Simo, Jules
    McInnes, Colin R.
    [J]. ACTA ASTRONAUTICA, 2014, 96 : 106 - 115