MEAN ESTIMATION WITH SUB-GAUSSIAN RATES IN POLYNOMIAL TIME

被引:35
|
作者
Hopkins, Samuel B. [1 ]
机构
[1] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA
来源
ANNALS OF STATISTICS | 2020年 / 48卷 / 02期
基金
美国国家科学基金会;
关键词
Multivariate estimation; heavy tails; confidence intervals; sub-Gaussian rates; semidefinite programming; sum of squares method; ROBUST ESTIMATION; SPARSE PCA; SEMIDEFINITE; RELAXATION; POWER; CUT;
D O I
10.1214/19-AOS1843
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study polynomial time algorithms for estimating the mean of a heavy-tailed multivariate random vector. We assume only that the random vector X has finite mean and covariance. In this setting, the radius of confidence intervals achieved by the empirical mean are large compared to the case that X is Gaussian or sub-Gaussian. We offer the first polynomial time algorithm to estimate the mean with sub-Gaussian-size confidence intervals under such mild assumptions. Our algorithm is based on a new semidefinite programming relaxation of a high-dimensional median. Previous estimators which assumed only existence of finitely many moments of X either sacrifice sub-Gaussian performance or are only known to be computable via brute-force search procedures requiring time exponential in the dimension.
引用
收藏
页码:1193 / 1213
页数:21
相关论文
共 50 条
  • [1] Fast Mean Estimation with Sub-Gaussian Rates
    Cherapanamjeri, Yeshwanth
    Flammarion, Nicolas
    Bartlett, Peter L.
    [J]. CONFERENCE ON LEARNING THEORY, VOL 99, 2019, 99
  • [2] Optimal Sub-Gaussian Mean Estimation in R
    Lee, Jasper C. H.
    Valiant, Paul
    [J]. 2021 IEEE 62ND ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS 2021), 2022, : 672 - 683
  • [3] ROBUST SUB-GAUSSIAN ESTIMATION OF A MEAN VECTOR IN NEARLY LINEAR TIME
    Depersin, Jules
    Lecue, Guillaume
    [J]. ANNALS OF STATISTICS, 2022, 50 (01): : 511 - 536
  • [4] SUB-GAUSSIAN MEAN ESTIMATORS
    Devroye, Luc
    Lerasle, Matthieu
    Lugosi, Gabor
    Olivetra, Roberto I.
    [J]. ANNALS OF STATISTICS, 2016, 44 (06): : 2695 - 2725
  • [5] SUB-GAUSSIAN ESTIMATORS OF THE MEAN OF A RANDOM VECTOR
    Lugosi, Gabor
    Mendelson, Shahar
    [J]. ANNALS OF STATISTICS, 2019, 47 (02): : 783 - 794
  • [6] PARAMETER ESTIMATION OF SUB-GAUSSIAN STABLE DISTRIBUTIONS
    Omelchenko, Vadym
    [J]. KYBERNETIKA, 2014, 50 (06) : 929 - 949
  • [7] Estimation of canonical correlation directions: From Gaussian to sub-Gaussian population
    Liu, Youming
    Ren, Chunguang
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2021, 186
  • [8] Optimality in Mean Estimation: BeyondWorst-Case, Beyond Sub-Gaussian, and Beyond 1+α Moments
    Trung Dang
    Lee, Jasper C. H.
    Song, Maoyuan
    Valiant, Paul
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [9] FINITE SAMPLE PERFORMANCE OF LEAST SQUARES ESTIMATION IN SUB-GAUSSIAN NOISE
    Krikheli, Michael
    Leshem, Amir
    [J]. 2016 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP), 2016,
  • [10] CERTAIN PROPERTIES OF GAUSSIAN AND SUB-GAUSSIAN SEQUENCES
    YADRENKO, OM
    [J]. DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA A-FIZIKO-MATEMATICHNI TA TECHNICHNI NAUKI, 1983, (10): : 21 - 23