An Application of Hyper-Heuristics to Flexible Manufacturing Systems

被引:0
|
作者
Linard, Alexis [1 ]
van Pinxten, Joost [2 ,3 ]
机构
[1] Radboud Univ Nijmegen, Inst Comp & Informat Sci, Nijmegen, Netherlands
[2] Eindhoven Univ Technol, Dept Elect Engn, Eindhoven, Netherlands
[3] Oce Technol, Venlo, Netherlands
关键词
Embedded and Cyber-Physical Systems; Re-entrant Flow Shops; Flexible Manufacturing Systems; Hyper Heuristics; Genetic Programming;
D O I
10.1109/DSD.2019.00057
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Optimizing the productivity of Flexible Manufacturing Systems requires online scheduling to ensure that the timing constraints due to complex interactions between modules are satisfied. This work focuses on optimizing a ranking metric such that the online scheduler locally (i.e., per product) chooses an option that yields the highest productivity in the long term. In this paper, we focus on the scheduling of a re-entrant Flexible Manufacturing System, more specifically a Large Scale Printer capable of printing hundreds of sheets per minute. The system requires an online scheduler that determines for each sheet when it should enter the system, be printed for the first time, and when it should return for its second print. We have applied genetic programming, a hyper-heuristic, to heuristically find good ranking metrics that can be used in an online scheduling heuristic. The results show that metrics can be tuned for different job types, to increase the productivity of such systems. Our methods achieved a significant reduction in the jobs' makespan.
引用
收藏
页码:343 / 350
页数:8
相关论文
共 50 条
  • [1] Comparing Hyper-heuristics with Blackboard Systems
    Graham, Kevin
    Smith, Leslie
    PROCEEDINGS OF THE 2017 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION (GECCO'17 COMPANION), 2017, : 1141 - 1145
  • [2] Hyper-Heuristics
    Tauritz, Daniel R.
    Woodward, John
    PROCEEDINGS OF THE 2016 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE (GECCO'16 COMPANION), 2016, : 273 - 304
  • [3] Hyper-heuristics applications to manufacturing scheduling: overview and opportunities
    Wassim, Bouazza
    IFAC PAPERSONLINE, 2023, 56 (02): : 935 - 940
  • [4] Unified encoding for hyper-heuristics with application to bioinformatics
    Aleksandra Swiercz
    Edmund K. Burke
    Mateusz Cichenski
    Grzegorz Pawlak
    Sanja Petrovic
    Tomasz Zurkowski
    Jacek Blazewicz
    Central European Journal of Operations Research, 2014, 22 : 567 - 589
  • [5] Unified encoding for hyper-heuristics with application to bioinformatics
    Swiercz, Aleksandra
    Burke, Edmund K.
    Cichenski, Mateusz
    Pawlak, Grzegorz
    Petrovic, Sanja
    Zurkowski, Tomasz
    Blazewicz, Jacek
    CENTRAL EUROPEAN JOURNAL OF OPERATIONS RESEARCH, 2014, 22 (03) : 567 - 589
  • [6] Hyper-heuristics Tutorial
    Tauritz, Daniel R.
    Woodward, John
    PROCEEDINGS OF THE 2019 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION (GECCCO'19 COMPANION), 2019, : 770 - 805
  • [7] Hyper-heuristics Tutorial
    Tauritz, Daniel R.
    Woodward, John
    PROCEEDINGS OF THE 2017 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION (GECCO'17 COMPANION), 2017, : 510 - 544
  • [8] Dynamic scheduling of manufacturing systems: a product-driven approach using hyper-heuristics
    Bouazza, Wassim
    Sallez, Yves
    Trentesaux, Damien
    INTERNATIONAL JOURNAL OF COMPUTER INTEGRATED MANUFACTURING, 2021, 34 (06) : 641 - 665
  • [9] A comprehensive analysis of hyper-heuristics
    Ozcan, Ender
    Bilgin, Burak
    Korkmaz, Emin Erkan
    INTELLIGENT DATA ANALYSIS, 2008, 12 (01) : 3 - 23
  • [10] Hyper-heuristics: A survey and taxonomy
    Dokeroglu, Tansel
    Kucukyilmaz, Tayfun
    Talbi, El-Ghazali
    COMPUTERS & INDUSTRIAL ENGINEERING, 2024, 187