Greibach normal form transformation revisited

被引:20
|
作者
Blum, N [1 ]
Koch, R [1 ]
机构
[1] Univ Bonn, D-53117 Bonn, Germany
关键词
D O I
10.1006/inco.1998.2772
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We develop a new method for placing a given context-free grammar into Greibach normal form with only polynomial increase of its size. Starting with an arbitrary epsilon-free context-free grammar G, we transform G into an equivalent context-free grammar H in extended Greibach normal form; i.e., in addition to rules, fulfilling the Greibach normal form properties, the grammar can have chain rules. The size of H will be O(\G\(3)), where \G\ is the size of G. Moreover, in the case that G is chain rule free, H will be already in Greibach normal form. If H is not chain rule free then we use the standard method for chain rule elimination for the transformation of H into Greibach normal form. The size of the constructed grammar is O(\G\(4)). (C) 1999 Academic Press.
引用
收藏
页码:112 / 118
页数:7
相关论文
共 50 条
  • [1] Greibach normal form transformation, revisited
    Koch, R
    Blum, N
    [J]. STACS 97 - 14TH ANNUAL SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SCIENCE, 1997, 1200 : 47 - 54
  • [2] ON GREIBACH NORMAL-FORM CONSTRUCTION
    URBANEK, FJ
    [J]. THEORETICAL COMPUTER SCIENCE, 1985, 40 (2-3) : 315 - 317
  • [3] ON GREIBACH NORMAL-FORM CONSTRUCTION
    URBANEK, FJ
    [J]. THEORETICAL COMPUTER SCIENCE, 1986, 44 (02) : 229 - 236
  • [4] Incremental Construction of Greibach Normal Form
    Bals, Markus
    Jansen, Christina
    Noll, Thomas
    [J]. 2013 INTERNATIONAL SYMPOSIUM ON THEORETICAL ASPECTS OF SOFTWARE ENGINEERING (TASE), 2013, : 165 - 168
  • [5] AN EASY PROOF OF GREIBACH NORMAL-FORM
    EHRENFEUCHT, A
    ROZENBERG, G
    [J]. INFORMATION AND CONTROL, 1984, 63 (03): : 190 - 199
  • [6] Greibach normal form in algebraically complete semirings
    Esik, Z
    Leiss, H
    [J]. COMPUTER SCIENCE LOGIC, PROCEEDINGS, 2002, 2471 : 135 - 150
  • [7] Algebraically complete semirings and Greibach normal form
    Esik, Z
    Leiss, H
    [J]. ANNALS OF PURE AND APPLIED LOGIC, 2005, 133 (1-3) : 173 - 203
  • [8] Weak Greibach Normal Form for Hyperedge Replacement Grammars
    Pshenitsyn, Tikhon
    [J]. ELECTRONIC PROCEEDINGS IN THEORETICAL COMPUTER SCIENCE, 2020, (330): : 108 - 125
  • [9] AN ELEMENTARY PROOF OF DOUBLE GREIBACH NORMAL-FORM
    ENGELFRIET, J
    [J]. INFORMATION PROCESSING LETTERS, 1992, 44 (06) : 291 - 293
  • [10] A Local Greibach Normal Form for Hyperedge Replacement Grammars
    Jansen, Christina
    Heinen, Jonathan
    Katoen, Joost-Pieter
    Noll, Thomas
    [J]. LANGUAGE AND AUTOMATA THEORY AND APPLICATIONS, 2011, 6638 : 323 - 335