Word segmentation using domain knowledge based on conditional random fields

被引:1
|
作者
Fukuda, Takuya [1 ]
Izzumi, Masataka [1 ]
Miura, Takao [1 ]
机构
[1] Hosei Univ, Dept Elect & Elect Engn, Tokyo, Japan
关键词
D O I
10.1109/ICTAI.2007.93
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this investigation, we propose an experimental approach for word segmentation in Japanese under domain-dependent situation. We apply Conditional Random Fields (CRF) to our issue. CRF learns several probabilistic parameters from training data with specific feature functions dependent on domains. Here we propose how to define domain specific feature functions.
引用
收藏
页码:436 / 439
页数:4
相关论文
共 50 条
  • [1] Domain dependent word segmentation based on conditional random fields
    Fukuda, Takuya
    Izumi, Masataka
    Miura, Takao
    [J]. 2007 IEEE PACIFIC RIM CONFERENCE ON COMMUNICATIONS, COMPUTERS AND SIGNAL PROCESSING, VOLS 1 AND 2, 2007, : 264 - 267
  • [2] Chinese Word Segmentation based on Conditional Random Fields with Character Clustering
    Du, Liping
    Li, Xiaoge
    Liu, Chunli
    Liu, Rui
    Fan, Xian
    Yang, Jianing
    Lin, Dayi
    Wei, Mian
    [J]. PROCEEDINGS OF THE 2016 INTERNATIONAL CONFERENCE ON ASIAN LANGUAGE PROCESSING (IALP), 2016, : 258 - 261
  • [3] Image Segmentation Based on Semantic Knowledge and Hierarchical Conditional Random Fields
    Qin, Cao
    Zhang, Yunzhou
    Hu, Meiyu
    Chu, Hao
    Wang, Lei
    [J]. PATTERN RECOGNITION AND COMPUTER VISION (PRCV 2018), PT I, 2018, 11256 : 213 - 225
  • [4] A Chinese word segmentation model for energy literature based on Conditional Random Fields
    Zhao, Liujun
    Kong, Weizheng
    Chai, Bo
    [J]. 2018 2ND IEEE CONFERENCE ON ENERGY INTERNET AND ENERGY SYSTEM INTEGRATION (EI2), 2018, : 785 - 788
  • [5] Utterance Segmentation Using Conditional Random Fields
    Ben Dbabis, Samira
    Reguii, Boutheina
    Ghorbel, Hatem
    Belguith, Lamia Hadrich
    [J]. INNOVATION MANAGEMENT AND EDUCATION EXCELLENCE VISION 2020: FROM REGIONAL DEVELOPMENT SUSTAINABILITY TO GLOBAL ECONOMIC GROWTH, VOLS I - VI, 2016, : 3420 - 3426
  • [6] Handwritten word recognition using conditional random fields
    Shetty, Shravya
    Srinivasan, Harish
    Srihari, Sargur
    [J]. ICDAR 2007: NINTH INTERNATIONAL CONFERENCE ON DOCUMENT ANALYSIS AND RECOGNITION, VOLS I AND II, PROCEEDINGS, 2007, : 1098 - 1102
  • [7] TLex plus : A Hybrid Method Using Conditional Random Fields and Dictionaries for Thai Word Segmentation
    Kongyoung, Sarawoot
    Rugchatjaroen, Anocha
    Kosawat, Krit
    [J]. RECENT ADVANCES AND FUTURE PROSPECTS IN KNOWLEDGE, INFORMATION AND CREATIVITY SUPPORT SYSTEMS, 2018, 685 : 112 - 125
  • [8] Segmentation and labeling of documents using Conditional Random Fields
    Shetty, Shravya
    Srinivasan, Harish
    Beal, Matthew
    Srihari, Sargur
    [J]. DOCUMENT RECOGNITION AND RETRIEVAL XIV, 2007, 6500
  • [9] A Conditional Random Fields Model for Overlapping Ambiguity Resolution in Chinese Word Segmentation
    Liang, Yan
    Zhu, Yaoting
    [J]. 2009 IEEE INTERNATIONAL CONFERENCE ON GRANULAR COMPUTING ( GRC 2009), 2009, : 384 - +
  • [10] SUPERPIXEL-BASED OBJECT CLASS SEGMENTATION USING CONDITIONAL RANDOM FIELDS
    Li, Xi
    Sahbi, Hichem
    [J]. 2011 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2011, : 1101 - 1104