PARAMETER ESTIMATION IN NONLINEAR AR-GARCH MODELS

被引:29
|
作者
Meitz, Mika [1 ]
Saikkonen, Pentti [2 ]
机构
[1] Koc Univ, Dept Econ, TR-34450 Istanbul, Turkey
[2] Univ Helsinki, Dept Math & Stat, FIN-00014 Helsinki, Finland
基金
芬兰科学院; 新加坡国家研究基金会;
关键词
MAXIMUM-LIKELIHOOD-ESTIMATION; AVERAGE TIME-SERIES; AUTOREGRESSIVE MODELS; CONDITIONAL HETEROSCEDASTICITY; ASYMPTOTIC THEORY; CONSISTENCY; ERRORS; COEFFICIENTS; ERGODICITY; VOLATILITY;
D O I
10.1017/S0266466611000041
中图分类号
F [经济];
学科分类号
02 ;
摘要
This paper develops an asymptotic estimation theory for nonlinear autoregressive models with conditionally heteroskedastic errors. We consider a general nonlinear autoregression of order p (AR(p)) with the conditional variance specified as a general nonlinear first-order generalized autoregressive conditional heteroskedasticity (GARCH(1,1)) model. We do not require the rescaled errors to be independent, but instead only to form a stationary and ergodic martingale difference sequence. Strong consistency and asymptotic normality of the global Gaussian quasi-maximum likelihood (QML) estimator are established under conditions comparable to those recently used in the corresponding linear case. To the best of our knowledge, this paper provides the first results on consistency and asymptotic normality of the QML estimator in nonlinear autoregressive models with GARCH errors.
引用
收藏
页码:1236 / 1278
页数:43
相关论文
共 50 条