Curves with rational chord-length parametrization

被引:9
|
作者
Sanchez-Reyes, J. [1 ]
Fernandez-Jambrina, L. [2 ]
机构
[1] Univ Castilla La Mancha, ETS Ingenieros Ind, Inst Matemat Aplicada Ciencia & Ingn, E-13071 Ciudad Real, Spain
[2] Univ Politecn Madrid, ETSI Navales, E-28040 Madrid, Spain
关键词
Bezier circle; bipolar coordinates; chord-length parametrization; equilateral hyperbola; Lemniscate of Bernoulli;
D O I
10.1016/j.cagd.2007.11.003
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
It has been recently proved that rational quadratic circles in standard Bezier form are parameterized by chord-length. If we consider that standard circles coincide with the isoparametric curves in a system of bipolar coordinates, this property comes as a straightforward consequence. General curves with chord-length parametrization are simply the analogue in bipolar coordinates of nonparametric curves. This interpretation furnishes a compact explicit expression for all planar curves with rational chord-length parametrization. In addition to straight lines and circles in standard form, they include remarkable curves, such as the equilateral hyperbola, Lemniscate of Bernoulli and Limacon of Pascal. The extension to 3D rational curves is also tackled. (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:205 / 213
页数:9
相关论文
共 50 条
  • [1] An Approximate Chord-Length Parameterization Algorithm for Rational Bézier Curves
    Li, Xiaowei
    Sun, Li
    Yang, Yijun
    Zeng, Wei
    [J]. Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2019, 31 (09): : 1622 - 1627
  • [2] Construction of Endpoint Constrained Cubic Rational Curve with Chord-Length Parameterization
    LI Pei-pei
    ZHANG Xin
    ZHANG Ai-wu
    [J]. CADDM, 2013, (04) : 35 - 39
  • [3] The chord-length distribution of a polyhedron
    Ciccariello, Salvino
    [J]. ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2020, 76 : 474 - 488
  • [4] Analysis of chord-length distributions
    Burger, C
    Ruland, W
    [J]. ACTA CRYSTALLOGRAPHICA SECTION A, 2001, 57 : 482 - 491
  • [5] Curves and surfaces with rational chord length parameterization
    Bastl, Bohumir
    Juettler, Bert
    Lavicka, Miroslav
    Sir, Zbynek
    [J]. COMPUTER AIDED GEOMETRIC DESIGN, 2012, 29 (05) : 231 - 241
  • [6] CHORD-LENGTH DISTRIBUTIONS AND RELATED QUANTITIES FOR SPHEROIDS
    KELLERER, AM
    [J]. RADIATION RESEARCH, 1984, 98 (03) : 425 - 437
  • [7] The chord-length probability density of the regular octahedron
    Ciccariello, Salvino
    [J]. JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2014, 47 : 1216 - 1227
  • [8] Shape matching using chord-length function
    Wang, Bin
    Shi, Chaojian
    [J]. INTELLIGENT DATA ENGINEERING AND AUTOMATED LEARNING - IDEAL 2006, PROCEEDINGS, 2006, 4224 : 746 - 753
  • [9] Parametrization of ε-Rational Curves
    Perez-Diaz, Sonia
    Rafael Sendra, J.
    Rueda, Sonia L.
    Sendra, Juana
    [J]. SNC'09: PROCEEDINGS OF THE 2009 INTERNATIONAL WORKSHOP ON SYMBOLIC-NUMERIC COMPUTATION, 2009, : 199 - 200
  • [10] Shape retrieval using statistical chord-length features
    Shi, Chaojian
    Wang, Bin
    [J]. ADVANCES IN IMAGE AND VIDEO TECHNOLOGY, PROCEEDINGS, 2006, 4319 : 403 - +