Quantum dot nonlinearity through cavity-enhanced feedback with a charge memory

被引:7
|
作者
Bakker, Morten P. [1 ]
Ruytenberg, Thomas [1 ]
Loffler, Wolfgang [1 ]
Barve, Ajit [2 ]
Coldren, Larry [2 ]
van Exter, Martin P. [1 ]
Bouwmeester, Dirk [1 ,2 ]
机构
[1] Leiden Univ, Huygens Kamerlingh Onnes Lab, NL-2300 RA Leiden, Netherlands
[2] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA
来源
PHYSICAL REVIEW B | 2015年 / 91卷 / 24期
基金
美国国家科学基金会;
关键词
MICROSTRUCTURE; POLARIZATION; OXIDATION;
D O I
10.1103/PhysRevB.91.241305
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In an oxide apertured quantum dot (QD) micropillar cavity-QED system, we observe strong QD hysteresis effects and line-shape modifications even at very low intensities corresponding to <10(-3) intracavity photons. We attribute this to the excitation of charges by the intracavity field; they get trapped at the oxide aperture, where they screen the internal electric field and blueshift the QD transition. This in turn strongly modulates light absorption by cavity-QED effects, eventually leading to the observed hysteresis and line-shape modifications. The cavity also enables us to observe the QD dynamics in real time, and all experimental data agree well with a power-law charging model. The observed charging effect can serve as a tuning mechanism for quantum dots.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Cavity-enhanced excitation of a quantum dot in the picosecond regime
    Javadi, Alisa
    Tomm, Natasha
    Antoniadis, Nadia O.
    Brash, Alistair J.
    Schott, Rudiger
    Valentin, Sascha R.
    Wieck, Andreas D.
    Ludwig, Arne
    Warburton, Richard J.
    [J]. NEW JOURNAL OF PHYSICS, 2023, 25 (09):
  • [2] Spatial Multiplexing in a Cavity-Enhanced Quantum Memory
    Kunz, Paul D.
    Santra, Siddhartha
    Meyer, David H.
    Castillo, Zachary A.
    Malinovsky, Vladimir S.
    Cox, Kevin C.
    [J]. ADVANCES IN PHOTONICS OF QUANTUM COMPUTING, MEMORY, AND COMMUNICATION XII, 2019, 10933
  • [3] Cavity-enhanced single photons from a quantum dot
    Vuckovic, J
    Fattal, D
    Englund, D
    Waks, E
    Santori, C
    Solomon, G
    Yamamoto, Y
    [J]. PHYSICS AND SIMULATION OF OPTOELECTRONIC DEVICES XIII, 2005, 5722 : 19 - 29
  • [4] Cavity-enhanced coherent light scattering from a quantum dot
    Bennett, Anthony J.
    Lee, James P.
    Ellis, David J. P.
    Meany, Thomas
    Murray, Eoin
    Floether, Frederik F.
    Griffths, Jonathan P.
    Farrer, Ian
    Ritchie, David A.
    Shields, Andrew J.
    [J]. SCIENCE ADVANCES, 2016, 2 (04):
  • [5] Cavity-Enhanced Transport of Charge
    Hagenmueller, David
    Schachenmayer, Johannes
    Schutz, Stefan
    Genes, Claudiu
    Pupillo, Guido
    [J]. PHYSICAL REVIEW LETTERS, 2017, 119 (22)
  • [6] Cavity-enhanced simultaneous dressing of quantum dot exciton and biexciton states
    Hargart, F.
    Mueller, M.
    Roy-Choudhury, K.
    Portalupi, S. L.
    Schneider, C.
    Hoefling, S.
    Kamp, M.
    Hughes, S.
    Michler, P.
    [J]. PHYSICAL REVIEW B, 2016, 93 (11)
  • [7] Resonant Cavity-Enhanced Multicolor Polarization Sensitive Quantum Dot Infrared Photodetector
    Singh, Satish Kumar
    Kumar, Jitendra
    [J]. IEEE JOURNAL OF QUANTUM ELECTRONICS, 2016, 52 (08)
  • [8] Low-threshold cavity-enhanced superfluorescence in polyhedral quantum dot superparticles
    Li, Xinjie
    Chen, Linqi
    Mao, Danqun
    Li, Jingzhou
    Xie, Wei
    Dong, Hongxing
    Zhang, Long
    [J]. NANOSCALE ADVANCES, 2024, 6 (12): : 3220 - 3228
  • [9] Linear cavity optical-feedback cavity-enhanced absorption spectroscopy with a quantum cascade laser
    Bergin, A. G. V.
    Hancock, G.
    Ritchie, G. A. D.
    Weidmann, D.
    [J]. OPTICS LETTERS, 2013, 38 (14) : 2475 - 2477
  • [10] Optical-feedback cavity-enhanced absorption spectroscopy with a quantum cascade laser
    Maisons, G.
    Carbajo, P. Gorrotxategi
    Carras, M.
    Romanini, D.
    [J]. OPTICS LETTERS, 2010, 35 (21) : 3607 - 3609