Iterative statistical linear regression for Gaussian smoothing in continuous-time non-linear stochastic dynamic systems

被引:4
|
作者
Tronarp, Filip [1 ]
Sarkka, Simo [1 ]
机构
[1] Aalto Univ, Dept Elect Engn & Automat, Rakentajanaukio 2, Espoo 02150, Finland
来源
SIGNAL PROCESSING | 2019年 / 159卷
基金
芬兰科学院;
关键词
Stochastic differential equations; Statistical linear regression; Iterative methods; Continuous-discrete Gaussian smoothing; PROJECTION;
D O I
10.1016/j.sigpro.2019.01.013
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper considers approximate smoothing for discretely observed non-linear stochastic differential equations. The problem is tackled by developing methods for linearising stochastic differential equations with respect to an arbitrary Gaussian process. Two methods are developed based on (1) taking the limit of statistical linear regression of the discretised process and (2) minimising an upper bound to a cost functional. Their difference is manifested in the diffusion of the approximate processes. This in turn gives novel derivations of pre-existing Gaussian smoothers when Method I is used and a new class of Gaussian smoothers when Method 2 is used. Furthermore, based on the aforementioned development the iterative Gaussian smoothers in discrete-time are generalised to the continuous-time setting by iteratively re-linearising the stochastic differential equation with respect to the current Gaussian process approximation to the smoothed process. The method is verified in two challenging tracking problems, a reentry problem and a radar tracked coordinated turn model with state dependent diffusion. The results show that the method has competitive estimation accuracy with state-of-the-art smoothers. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 50 条