Structure pruning strategies for min-max modular network

被引:0
|
作者
Yang, Y [1 ]
Lu, BL [1 ]
机构
[1] Shanghai Jiao Tong Univ, Dept Comp Sci & Engn, Shanghai 200030, Peoples R China
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The min-max modular network has been shown to be an efficient classifier, especially in solving large-scale and complex pattern classification problems. Despite its high modularity and parallelism, it suffers from quadratic complexity in space when a multiple-class problem is decomposed into a number of linearly separable problems. This paper proposes two new pruning methods and an integrated process to reduce the redundancy of the network and optimize the network structure. We show that our methods can prune a lot of redundant modules in comparison with the original structure while maintaining the generalization accuracy.
引用
收藏
页码:646 / 651
页数:6
相关论文
共 50 条
  • [1] An algorithm for pruning redundant modules in min-max modular network
    Lian, HC
    Lu, BL
    [J]. PROCEEDINGS OF THE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), VOLS 1-5, 2005, : 1983 - 1988
  • [2] An algorithm for pruning redundant modules in min-max modular network with GZC function
    Li, J
    Lu, BL
    Ichikawa, AM
    [J]. ADVANCES IN NATURAL COMPUTATION, PT 1, PROCEEDINGS, 2005, 3610 : 293 - 302
  • [3] SYNTHESIS OF MIN-MAX STRATEGIES
    GUTMAN, S
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1985, 46 (04) : 515 - 523
  • [4] A min-max modular network with Gaussian-zero-crossing function
    Lu, Bao-Liang
    Li, Jing
    [J]. TRENDS IN NEURAL COMPUTATION, 2007, 35 : 285 - +
  • [5] MODULE COMBINATION BASED ON DECISION TREE IN MIN-MAX MODULAR NETWORK
    Wang, Yue
    Lu, Bao-Liang
    Ye, Zhi-Fei
    [J]. IJCCI 2009: PROCEEDINGS OF THE INTERNATIONAL JOINT CONFERENCE ON COMPUTATIONAL INTELLIGENCE, 2009, : 555 - 558
  • [6] Min-max and min-min stackelberg strategies with closed-loop information structure
    M. Jungers
    E. Trelat
    H. Abou-kandil
    [J]. Journal of Dynamical and Control Systems, 2011, 17 : 387 - 425
  • [7] Min-max and min-min stackelberg strategies with closed-loop information structure
    Jungers, M.
    Trelat, E.
    Abou-Kandil, H.
    [J]. JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2011, 17 (03) : 387 - 425
  • [8] Fault diagnosis for industrial images using a min-max modular neural network
    Huang, B
    Lu, BL
    [J]. NEURAL INFORMATION PROCESSING, 2004, 3316 : 842 - 847
  • [9] Parallelized extreme learning machine ensemble based on min-max modular network
    Wang, Xiao-Lin
    Chen, Yang-Yang
    Zhao, Hai
    Lu, Bao-Liang
    [J]. NEUROCOMPUTING, 2014, 128 : 31 - 41
  • [10] Speech recognition using Modular General Fuzzy Min-Max Neural Network
    Doye, D
    Sontakke, T
    [J]. IETE JOURNAL OF RESEARCH, 2002, 48 (02) : 99 - 103