Fourier Series in Weighted Lorentz Spaces

被引:2
|
作者
Rastegari, Javad [1 ]
Sinnamon, Gord [1 ]
机构
[1] Univ Western Ontario, Dept Math, London, ON, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Fourier series; Fourier coefficients; Weights; Lorentz space; LAPLACE TRANSFORM; HARDY-SPACES; INEQUALITIES;
D O I
10.1007/s00041-015-9455-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Fourier coefficient map is considered as an operator from a weighted Lorentz space on the circle to a weighted Lorentz sequence space. For a large range of Lorentz indices, necessary and sufficient conditions on the weights are given for the map to be bounded. In addition, new direct analogues are given for known weighted Lorentz space inequalities for the Fourier transform. Applications are given that involve Fourier coefficients of functions in LogL and more general Lorentz-Zygmund spaces.
引用
收藏
页码:1192 / 1223
页数:32
相关论文
共 50 条
  • [1] Fourier Series in Weighted Lorentz Spaces
    Javad Rastegari
    Gord Sinnamon
    Journal of Fourier Analysis and Applications, 2016, 22 : 1192 - 1223
  • [2] The Fourier transform in weighted Lorentz spaces
    Sinnamon, G
    PUBLICACIONS MATEMATIQUES, 2003, 47 (01) : 3 - 29
  • [3] Weighted Fourier Inequalities in Lebesgue and Lorentz Spaces
    Nursultanov, Erlan
    Tikhonov, Sergey
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2020, 26 (04)
  • [4] Weighted Fourier Inequalities in Lebesgue and Lorentz Spaces
    Erlan Nursultanov
    Sergey Tikhonov
    Journal of Fourier Analysis and Applications, 2020, 26
  • [5] MULTIPLIERS OF FOURIER-HAAR SERIES IN LORENTZ SPACES
    Tleukhanova, N. T.
    Bashirova, A. N.
    EURASIAN MATHEMATICAL JOURNAL, 2022, 13 (04): : 82 - 87
  • [6] Convergence of Multiple Vilenkin-Fourier Series in Lorentz Spaces
    Lukyanenko, O. A.
    IZVESTIYA SARATOVSKOGO UNIVERSITETA NOVAYA SERIYA-MATEMATIKA MEKHANIKA INFORMATIKA, 2007, 7 (01): : 15 - 22
  • [7] WEIGHTED COMPOSITION OPERATORS ON WEIGHTED LORENTZ SPACES
    Eryilmaz, Ilker
    COLLOQUIUM MATHEMATICUM, 2012, 128 (02) : 143 - 151
  • [8] THE RIESZ CONVERGENCE PROPERTY ON WEIGHTED LORENTZ SPACES AND ORLICZ-LORENTZ SPACES
    Li, Hongliang
    QUAESTIONES MATHEMATICAE, 2013, 36 (02) : 181 - 196
  • [9] LIPSCHITZ SPACES AND FOURIER-TRANSFORMS ON LORENTZ SPACES
    BAGBY, RJ
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 22 (03): : A402 - A402
  • [10] CONVOLUTION IN WEIGHTED LORENTZ SPACES OF TYPE Γ
    Krepela, Martin
    MATHEMATICA SCANDINAVICA, 2016, 119 (01) : 113 - 132