Reversible jump Markov chain Monte Carlo for brain activation detection

被引:0
|
作者
Lukic, AS [1 ]
Wernick, MN [1 ]
Galatsanos, NP [1 ]
Yang, Y [1 ]
机构
[1] IIT, Chicago, IL 60616 USA
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We propose a new signal-detection approach for detecting brain activations from PET or fMRI images in a two-state ("on-off") neuroimaging study. We model the activation pattern as a superposition of an unknown number of circular spatial basis functions of unknown position, size, and amplitude. We determine the number of these functions and their parameters by maximum a posteriori (MAP) estimation. To maximize the posterior distribution we use a reversible-jump Markov-chain Monte-Carlo (RJMCMC) algorithm. The main advantage of RJMCMC is that it can estimate parameter vectors of unknown length. Thus, in the model used the number of activation sites does not need to be known. Using a phantom derived from a neuroimaging study, we demonstrate that the proposed method can estimate more accurately the activation pattern from traditional approaches. We also show results obtained from real fMRI data.
引用
收藏
页码:506 / 509
页数:4
相关论文
共 50 条
  • [1] Reversible jump Markov chain Monte Carlo for deconvolution
    Kang, Dongwoo
    Verotta, Davide
    [J]. JOURNAL OF PHARMACOKINETICS AND PHARMACODYNAMICS, 2007, 34 (03) : 263 - 287
  • [2] Reversible Jump Markov Chain Monte Carlo for Deconvolution
    Dongwoo Kang
    Davide Verotta
    [J]. Journal of Pharmacokinetics and Pharmacodynamics, 2007, 34 : 263 - 287
  • [3] Detection and estimation of signals by reversible jump Markov Chain Monte Carlo computations
    Djuric, PM
    Godsill, SJ
    Fitzgerald, WJ
    Rayner, PJW
    [J]. PROCEEDINGS OF THE 1998 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, VOLS 1-6, 1998, : 2269 - 2272
  • [4] Reversible jump Markov chain Monte Carlo signal detection in functional neuroimaging analysis
    Lukic, AS
    Wernick, MN
    Galatsanos, NP
    Yang, YY
    Strother, SC
    [J]. 2004 2ND IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: MACRO TO NANO, VOLS 1 and 2, 2004, : 868 - 871
  • [5] An extension of reversible jump Markov Chain Monte Carlo in Hidden Markov Models
    Zhou, Feifei
    Chen, Jinwen
    [J]. Proceedings of the Fifth International Conference on Information and Management Sciences, 2006, 5 : 559 - 563
  • [6] On input selection with reversible jump Markov chain Monte Carlo sampling
    Sykacek, P
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 12, 2000, 12 : 638 - 644
  • [7] Reversible jump Markov chain Monte Carlo method for deconvolution.
    Kang, D
    [J]. CLINICAL PHARMACOLOGY & THERAPEUTICS, 2003, 73 (02) : P57 - P57
  • [8] Model choice using reversible jump Markov chain Monte Carlo
    Hastie, David I.
    Green, Peter J.
    [J]. STATISTICA NEERLANDICA, 2012, 66 (03) : 309 - 338
  • [9] Population-based reversible jump Markov chain Monte Carlo
    Jasra, Ajay
    Stephens, David A.
    Holmes, Christopher C.
    [J]. BIOMETRIKA, 2007, 94 (04) : 787 - 807
  • [10] Discrete Reversible Jump Markov Chain Monte Carlo Trajectory Clustering
    Busch, Steffen
    Brenner, Claus
    [J]. 2019 IEEE INTELLIGENT TRANSPORTATION SYSTEMS CONFERENCE (ITSC), 2019, : 1475 - 1481