THE RESULTANT OF DEVELOPED SYSTEMS OF LAURENT POLYNOMIALS

被引:2
|
作者
Khovanskii, A. G. [1 ,2 ]
Monin, Leonid [1 ]
机构
[1] Univ Toronto, Dept Math, Toronto, ON, Canada
[2] Moscow Independent Univ, Moscow, Russia
关键词
Newton polyhedron; Laurent polynomial; developed system; resultant; Poisson formula; Parshin reciprocity laws; GROTHENDIECK RESIDUES;
D O I
10.17323/1609-4514-2017-17-4-717-740
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let R-Delta (f(1), ... ,f(n+1)) be the Delta-resultant (defined in the paper) of (n + 1)-tuple of Laurent polynomials. We provide an algorithm for computing R-Delta assuming that an n-tuple (f(2), ... , f(n+1)) is developed. We provide a relation between the product of f(1) over roots of f(2) = ... = f(n+1) = 0 in (C*)(n) and the product of f(2) over roots of f(1) = f(3) = ... = f(n+1) = 0 in (C*)(n) assuming that the n-tuple (f(1)f(2), f(3), ... , f(n+1)) is developed. If all n-tuples contained in (f(1), ... , f(n+1)) are developed we provide a signed version of Poisson formula for R-Delta. In our proofs we use topological arguments and topological version of the Parshin reciprocity laws.
引用
收藏
页码:717 / 740
页数:24
相关论文
共 50 条
  • [1] Sparse Differential Resultant for Laurent Differential Polynomials
    Li, Wei
    Yuan, Chun-Ming
    Gao, Xiao-Shan
    [J]. FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2015, 15 (02) : 451 - 517
  • [2] Sparse Differential Resultant for Laurent Differential Polynomials
    Wei Li
    Chun-Ming Yuan
    Xiao-Shan Gao
    [J]. Foundations of Computational Mathematics, 2015, 15 : 451 - 517
  • [3] Multivariate Orthogonal Laurent Polynomials and Integrable Systems
    Ariznabarreta, Gerardo
    Manas, Manuel
    [J]. PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 2022, 58 (01) : 79 - 185
  • [4] ON VANISHING THEOREMS FOR LOCAL SYSTEMS ASSOCIATED TO LAURENT POLYNOMIALS
    Esterov, Alexander
    Takeuchi, Kiyoshi
    [J]. NAGOYA MATHEMATICAL JOURNAL, 2018, 231 : 1 - 22
  • [5] Matrix -valued Laurent polynomials, parametric linear systems and integrable systems
    Lopez-Reyes, Nancy
    Felipe-Sosa, Raul
    Felipe, Raul
    [J]. JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2020, 357 (10): : 6257 - 6279
  • [6] INVERTIBLE LAURENT POLYNOMIALS
    BLAIR, WD
    KETTNER, JE
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1981, 88 (06): : 448 - 448
  • [7] ORTHOGONAL LAURENT POLYNOMIALS
    HENDRIKSEN, E
    VANROSSUM, H
    [J]. PROCEEDINGS OF THE KONINKLIJKE NEDERLANDSE AKADEMIE VAN WETENSCHAPPEN SERIES A-MATHEMATICAL SCIENCES, 1986, 89 (01): : 17 - 36
  • [8] Interpolating Laurent polynomials
    Cooper, SC
    Gustafson, PE
    [J]. ORTHOGONAL FUNCTIONS, MOMENT THEORY, AND CONTINUED FRACTIONS: THEORY AND APPLICATIONS, 1998, 199 : 143 - 150
  • [9] Gauss-Manin systems of families of Laurent polynomials and A-hypergeometric systems
    Reichelt, Thomas
    Walther, Uli
    [J]. COMMUNICATIONS IN ALGEBRA, 2019, 47 (06) : 2503 - 2524
  • [10] THE RESULTANT OF 2 POLYNOMIALS
    LASCOUX, A
    [J]. LECTURE NOTES IN MATHEMATICS, 1986, 1220 : 56 - 72