Achieving Ultralow Lattice Thermal Conductivity and High Thermoelectric Performance in GeTe Alloys via Introducing Cu2Te Nanocrystals and Resonant Level Doping

被引:69
|
作者
Zhang, Qingtang [1 ]
Ti, Zhuoyang [2 ]
Zhu, Yuelei [3 ]
Zhang, Yongsheng [2 ]
Cao, Yang [1 ]
Li, Shuang [1 ]
Wang, Meiyu [3 ]
Li, Di [2 ]
Zou, Bo [1 ]
Hou, Yunxiang [1 ]
Wang, Peng [3 ]
Tang, Guodong [1 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Mat Sci & Engn, MIIT Key Lab Adv Metall & Intermetall Mat Technol, Nanjing 210094, Peoples R China
[2] Chinese Acad Sci, Inst Solid State Phys, Key Lab Mat Phys, Hefei 230031, Peoples R China
[3] Nanjing Univ, Innovat Ctr Adv Microstruct, Coll Engn & Appl Sci & Collaborat, Natl Lab Solid State Microstruct, Nanjing 210093, Peoples R China
基金
中国国家自然科学基金;
关键词
resonant levels; nanocrystals; thermoelectric materials; carrier concentration; lattice thermal conductivity; BAND CONVERGENCE; POLYCRYSTALLINE SNSE; FIGURE; MERIT; PBTE; EFFICIENCY; LEADS; SNTE;
D O I
10.1021/acsnano.1c05650
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The binary compound of GeTe emerging as a potential medium-temperature thermoelectric material has drawn a great deal of attention. Here, we achieve ultralow lattice thermal conductivity and high thermoelectric performance in In and a heavy content of Cu codoped GeTe thermoelectrics. In dopants improve the density of state near the surface of Femi of GeTe by introducing resonant levels, producing a sharp increase of the Seebeck coefficient. In and Cu codoping not only optimizes carrier concentration but also substantially increases carrier mobility to a high value of 87 cm(2) V-1 s(-1 )due to the diminution of Ge vacancies. The enhanced Seebeck coefficient coupled with dramatically enhanced carrier mobility results in significant enhancement of PF in Ge1.04-x-yInxCuyTe series. Moreover, we introduce Cu2Te nanocrystals' secondary phase into GeTe by alloying a heavy content of Cu. Cu2Te nanocrystals and a high density of dislocations cause strong phonon scattering, significantly diminishing lattice thermal conductivity. The lattice thermal conductivity reduced as low as 0.31 W m(-1) K-1 at 823 K, which is not only lower than the amorphous limit of GeTe but also competitive with those of thermoelectric materials with strong lattice anharmonicity or complex crystal structures. Consequently, a high ZT of 2.0 was achieved for Ge0.9In0.015Cu0.125Te by decoupling electron and phonon transport of GeTe. This work highlights the importance of phonon engineering in advancing high-performance GeTe thermoelectrics.
引用
收藏
页码:19345 / 19356
页数:12
相关论文
共 45 条
  • [1] Achieving Ultralow Lattice Thermal Conductivity and High Thermoelectric Performance in Bi2Te2.7Se0.3 Alloys via Introducing Organic & Inorganic Nanoparticles
    Chen, Tao
    Li, Shujing
    Wang, Ziyuan
    Ge, Zhenhua
    Zhang, Yongsheng
    Xin, Hongxing
    Li, Di
    Zhang, Jian
    Qin, Xiaoying
    SMALL, 2025, 21 (07)
  • [2] Achieving ultralow lattice thermal conductivity and improved thermoelectric performance in BiSe by doping
    Liang, Xin
    Wang, Hemeng
    Ren, Jinlong
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2022, 42 (09) : 3905 - 3912
  • [3] Ultralow lattice thermal conductivity enables high thermoelectric performance in BaAg2Te2 alloys
    Tang, Jing
    Qin, Cheng
    Yu, Hulei
    Zeng, Zezhu
    Cheng, Lixun
    Ge, Binghui
    Chen, Yue
    Li, Wen
    Pei, Yanzhong
    MATERIALS TODAY PHYSICS, 2022, 22
  • [4] Intrinsically low lattice thermal conductivity and thermoelectric performance of 2D Cu2Te
    Bolen, E.
    Deligoz, E.
    Ozisik, H.
    PHYSICA SCRIPTA, 2024, 99 (04)
  • [5] Cu/Sb Codoping for Tuning Carrier Concentration and Thermoelectric Performance of GeTe-Based Alloys with Ultralow Lattice Thermal Conductivity
    Yue, Luo
    Fang, Teng
    Zheng, Shuqi
    Cui, Wenlin
    Wu, Yue
    Chang, Siyi
    Wang, Lijun
    Bai, Pengpeng
    Zhao, Huaizhou
    ACS APPLIED ENERGY MATERIALS, 2019, 2 (04): : 2596 - 2603
  • [6] Lone-pair engineering: Achieving ultralow lattice thermal conductivity and enhanced thermoelectric performance in Al-doped GeTe-based alloys
    Dou, Y.
    Li, J.
    Xie, Y.
    Wu, X.
    Hu, L.
    Liu, F.
    Ao, W.
    Liu, Y.
    Zhang, C.
    Materials Today Physics, 2021, 20
  • [7] Lone-pair engineering: Achieving ultralow lattice thermal conductivity and enhanced thermoelectric performance in Al-doped GeTe-based alloys
    Dou, Y.
    Li, J.
    Xie, Y.
    Wu, X.
    Hu, L.
    Liu, F.
    Ao, W.
    Liu, Y.
    Zhang, C.
    MATERIALS TODAY PHYSICS, 2021, 20
  • [8] Ultralow lattice thermal conductivity induced high thermoelectric performance in the δ-Cu2S monolayer
    Yu, Jiabing
    Li, Tingwei
    Nie, Ge
    Zhang, Bo-Ping
    Sun, Qiang
    NANOSCALE, 2019, 11 (21) : 10306 - 10313
  • [9] Ultralow thermal conductivity and high thermoelectric performance induced by multiscale lattice defects in Cu-doped BST alloys
    Liu, Yaohui
    Tang, Yu
    Tao, Yonggui
    Zhang, Ying
    Shen, Lanxian
    Ge, Wen
    Deng, Shukang
    CRYSTENGCOMM, 2023, 26 (01) : 100 - 109
  • [10] Achieving Ultralow Lattice Thermal Conductivity and High Thermoelectric Performance in SnTe by Alloying with MnSb2Se4
    Peng, Panpan
    Wang, Chao
    Cui, Shengqiang
    Wang, Chunhui
    Chen, Jing
    Hao, Min
    Huang, Xudong
    Wang, Xinxin
    Wang, Yajing
    Cheng, Zhenxiang
    Wang, Jianli
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (38) : 45016 - 45025