A NONMONOTONE MATRIX-FREE ALGORITHM FOR NONLINEAR EQUALITY-CONSTRAINED LEAST-SQUARES PROBLEMS

被引:1
|
作者
Bergou, El Houcine [1 ]
Diouane, Youssef [2 ]
Kungurtsev, Vyacheslav [3 ]
Royer, Clement W. [4 ]
机构
[1] Mohammed VI Polytech Univ, Ben Guerir, Morocco
[2] Univ Toulouse, ISAE SUPAERO, F-31055 Toulouse 4, France
[3] Czech Tech Univ, Fac Elect Engn, Dept Comp Sci, Prague 12000 2, Czech Republic
[4] Univ Paris 09, F-75016 Paris, France
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 2021年 / 43卷 / 05期
关键词
nonlinear least squares; equality constraints; Levenberg-Marquardt method; iter-ative linear algebra; PDE-constrained optimization; inverse problems; OPTIMIZATION;
D O I
10.1137/20M1349138
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Least squares form one of the most prominent classes of optimization problems with numerous applications in scientific computing and data fitting. When such formulations aim at modeling complex systems, the optimization process must account for nonlinear dynamics by incorporating constraints. In addition, these systems often incorporate a large number of variables, which increases the difficulty of the problem and motivates the need for efficient algorithms amenable to large-scale implementations. In this paper, we propose and analyze a Levenb erg-Marquardt algorithm for nonlinear least squares subject to nonlinear equality constraints. Our algorithm is based on inexact solves of linear least-squares problems that only require Jacobian-vector products. Global convergence is guaranteed by the combination of a composite step approach and a nonmonotone step acceptance rule. We illustrate the performance of our method on several test cases from data assimilation and inverse problems; our algorithm is able to reach the vicinity of a solution from an arbitrary starting point and can outperform the most natural alternatives for these classes of problems.
引用
收藏
页码:S743 / S766
页数:24
相关论文
共 50 条