Object Reconstruction Using the Binomial Theorem for Ghost Imaging

被引:4
|
作者
Yue, Cong [1 ]
Chen, Ping [1 ]
Lv, Xiaofeng [1 ]
Wang, Chenglong [2 ,3 ]
Guo, Shuxu [1 ]
Song, Junfeng [1 ]
Gong, Wenlin [2 ,3 ]
Gao, Fengli [1 ]
机构
[1] Jilin Univ, State Key Lab Integrated Optoelect, Coll Elect Sci & Engn, Changchun 130012, Jilin, Peoples R China
[2] Chinese Acad Sci, Key Lab Quantum Opt, Shanghai 201800, Peoples R China
[3] Chinese Acad Sci, Ctr Cold Atom Phys CAS, Shanghai Inst Opt & Fine Mech, Shanghai 201800, Peoples R China
来源
IEEE PHOTONICS JOURNAL | 2018年 / 10卷 / 06期
基金
中国国家自然科学基金;
关键词
Imaging processing; coherence imaging; photon statistics; quantum optics; PSEUDO-INVERSE; QUANTUM;
D O I
10.1109/JPHOT.2018.2880430
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Noise term in the reconstruction matrix in ghost imaging is a major cause of blurring imaging results. To remedy this problem, we propose a new ghost imaging method based on the binomial theorem to reduce the level of noise. In our method, images with low-level noise can be generated by constructing a binomial formula using high-order imaging results that are acquired by reintroducing the reconstruction result back into the imaging formula repeatedly. Experimental and simulation results demonstrate that our method is effective in improving imaging quality and the anti-interference performance and reducing computing time, making it useful for practical applications.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] High-Quality Object Reconstruction Based on Ghost Imaging
    Xiao, Yin
    Zhou, Lina
    Chen, Wen
    [J]. 2019 PHOTONICS & ELECTROMAGNETICS RESEARCH SYMPOSIUM - FALL (PIERS - FALL), 2019, : 2903 - 2907
  • [2] Object reconstruction by compressive sensing based normalized ghost imaging
    Guo, Shu-Xu
    Zhang, Chi
    Cao, Jun-Sheng
    Zhong, Fei
    Gao, Feng-Li
    [J]. Guangxue Jingmi Gongcheng/Optics and Precision Engineering, 2015, 23 (01): : 288 - 294
  • [3] Ghost imaging for an occluded object
    Gao, Chao
    Wang, Xiaoqian
    Gou, Lidan
    Feng, Yuling
    Cai, Hongji
    Wang, Zhifeng
    Yao, Zhihai
    [J]. LASER PHYSICS LETTERS, 2019, 16 (06)
  • [4] Pseudo-inverse iterative denoising method for object reconstruction of ghost imaging
    Zhang H.-W.
    Guo S.-X.
    Zhang C.
    Yang C.
    Cao J.-S.
    Gao F.-L.
    [J]. Gao, Feng-Li (gaofl@jlu.edu.cn), 1600, Chinese Optical Society (46):
  • [5] Object reconstitution using pseudo-inverse for ghost imaging
    Zhang, Chi
    Guo, Shuxu
    Cao, Junsheng
    Guan, Jian
    Gao, Fengli
    [J]. OPTICS EXPRESS, 2014, 22 (24): : 30063 - 30073
  • [6] Using Ghost Imaging Technique to Retrieve Information of Occluded Object
    Meng Chen
    Wang Xiaoqian
    Gao Chao
    Gou Lidan
    Chen Peng
    Yao Zhihai
    [J]. LASER & OPTOELECTRONICS PROGRESS, 2021, 58 (10)
  • [7] A refinement of the binomial distribution using the quantum binomial theorem
    Sills, Andrew V.
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2023, 52 (02) : 294 - 308
  • [8] Ghost imaging with pure phase object
    Zhang, Tianran
    Meng, Zhaokui
    Sun, Mingjie
    [J]. Hongwai yu Jiguang Gongcheng/Infrared and Laser Engineering, 2014, 43 (09): : 3105 - 3109
  • [9] Cloaking of a phase object in ghost imaging
    Gan, Shu
    Zhang, Su-Heng
    Zhao, Ting
    Xiong, Jun
    Zhang, Xiangdong
    Wang, Kaige
    [J]. APPLIED PHYSICS LETTERS, 2011, 98 (11)
  • [10] Grayscale object authentication based on ghost imaging using binary signals
    Chen, Wen
    Chen, Xudong
    [J]. EPL, 2015, 110 (04)