Newton-Cartan gravity and torsion

被引:41
|
作者
Bergshoeff, Eric [1 ]
Chatzistavrakidis, Athanasios [1 ,2 ]
Romano, Luca [1 ]
Rosseel, Jan [3 ]
机构
[1] Univ Groningen, Van Swinderen Inst Particle Phys & Grav, Nijenborgh 4, NL-9747 AG Groningen, Netherlands
[2] Rudjer Boskovic Inst, Div Theoret Phys, Bijenicka 54, Zagreb 10000, Croatia
[3] Univ Vienna, Fac Phys, Boltzmanngasse 5, A-1090 Vienna, Austria
来源
JOURNAL OF HIGH ENERGY PHYSICS | 2017年 / 10期
关键词
Classical Theories of Gravity; Space-Time Symmetries;
D O I
10.1007/JHEP10(2017)194
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We compare the gauging of the Bargmann algebra, for the case of arbitrary torsion, with the result that one obtains from a null-reduction of General Relativity. Whereas the two procedures lead to the same result for Newton-Cartan geometry with arbitrary torsion, the null-reduction of the Einstein equations necessarily leads to Newton-Cartan gravity with zero torsion. We show, for three space-time dimensions, how Newton-Cartan gravity with arbitrary torsion can be obtained by starting from a Schrodinger field theory with dynamical exponent z = 2 for a complex compensating scalar and next coupling this field theory to a z = 2 Schrodinger geometry with arbitrary torsion. The latter theory can be obtained from either a gauging of the Schrodinger algebra, for arbitrary torsion, or from a null-reduction of conformal gravity.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Newton-Cartan gravity and torsion
    Eric Bergshoeff
    Athanasios Chatzistavrakidis
    Luca Romano
    Jan Rosseel
    Journal of High Energy Physics, 2017
  • [2] Teleparallel Newton-Cartan gravity
    Schwartz, Philip K.
    CLASSICAL AND QUANTUM GRAVITY, 2023, 40 (10)
  • [3] 'Stringy' Newton-Cartan gravity
    Andringa, Roel
    Bergshoeff, Eric
    Gomis, Joaquim
    de Roo, Mees
    CLASSICAL AND QUANTUM GRAVITY, 2012, 29 (23)
  • [4] The teleparallel equivalent of Newton-Cartan gravity
    Read, James
    Teh, Nicholas J.
    CLASSICAL AND QUANTUM GRAVITY, 2018, 35 (18)
  • [5] A new look at Newton-Cartan gravity
    Bergshoeff, E. A.
    Rosseel, J.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2016, 31 (24):
  • [6] Newton-Cartan supergravity with torsion and Schrodinger supergravity
    Bergshoeff, Eric
    Rosseel, Jan
    Zojer, Thomas
    JOURNAL OF HIGH ENERGY PHYSICS, 2015, (11): : 1 - 31
  • [7] An action for extended string Newton-Cartan gravity
    Bergshoeff, Eric A.
    Grosvenor, Kevin T.
    Simsek, Ceyda
    Yan, Ziqi
    JOURNAL OF HIGH ENERGY PHYSICS, 2019, 2019 (01)
  • [8] An action for extended string Newton-Cartan gravity
    Eric A. Bergshoeff
    Kevin T. Grosvenor
    Ceyda Şimşek
    Ziqi Yan
    Journal of High Energy Physics, 2019
  • [9] Newton-Cartan supergravity with torsion and Schrödinger supergravity
    Eric Bergshoeff
    Jan Rosseel
    Thomas Zojer
    Journal of High Energy Physics, 2015
  • [10] The classification of general affine connections in Newton-Cartan geometry: towards metric-affine Newton-Cartan gravity
    Schwartz, Philip K.
    CLASSICAL AND QUANTUM GRAVITY, 2025, 42 (01)