Characterization of absorptance losses in optical materials using a high resolution Hartmann-Shack wavefront sensor

被引:0
|
作者
Bayer, A. [1 ]
Barkusky, F. [1 ]
Leinhos, U. [1 ]
Miege, T. [1 ]
Schaefer, B. [1 ]
Mann, K. [1 ]
机构
[1] Laser Lab Gottingen e V, D-37077 Gottingen, Germany
关键词
deep UV; photothermal effect; fused silica; single- and two-photon absorption; surface and bulk absorption; Hartmann-Shack; wavefront aberration; thermal lens;
D O I
10.1117/12.762579
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Lens heating due to absorbed UV laser radiation can diminish the achievable spatial resolution of the lithographic process in semiconductor wafer steppers. At the Laser- Laboratorium Gottingen a measurement system for quantitative registration of this thermal lens effect was developed. It is based upon a strongly improved Hartmann-Shack wavefront sensor with extreme sensitivity, accomplishing precise online monitoring of wavefront deformations of a collimated test laser beam transmitted through the laser-irradiated site of a sample. Caused by the temperature-dependent refractive index as well as thermal expansion, the formerly plane wavefront of the test laser is distorted to form a rotationally symmetric valley, being equivalent to a convex lens. The observed wavefront distortion is a quantitative measure of the absorption losses in the sample. Thermal theory affords absolute calibration of absorption coefficients.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Wavefront reconstruction of an optical vortex by a Hartmann-Shack sensor
    Starikov, F. A.
    Kochemasov, G. G.
    Kulikov, S. M.
    Manachinsky, A. N.
    Maslov, N. V.
    Ogorodnikov, A. V.
    Sukharev, S. A.
    Aksenov, V. P.
    Izmailov, I. V.
    Kanev, F. Yu.
    Atuchin, V. V.
    Soldatenkov, I. S.
    OPTICS LETTERS, 2007, 32 (16) : 2291 - 2293
  • [2] Extended Hartmann-Shack wavefront sensor
    Schäfer, B
    Mann, K
    Dyba, M
    Adaptive Optics for Industry and Medicine, Proceedings, 2005, 102 : 103 - 110
  • [3] Hartmann-Shack wavefront sensing for nonlinear materials characterization
    Rativa, D.
    de Araujo, R. E.
    Gomes, A. S. L.
    Vohnsen, B.
    OPTICS EXPRESS, 2009, 17 (24): : 22047 - 22053
  • [4] Fast Hartmann-Shack Wavefront Sensor for the Periphery
    Jaeken, B.
    Artal, P.
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2010, 51 (13)
  • [5] Simulation platform of Hartmann-Shack wavefront sensor
    Wu, Chaoqun
    Li, Mei
    Zhou, Luchun
    Hongwai yu Jiguang Gongcheng/Infrared and Laser Engineering, 2015, 44 (02): : 567 - 571
  • [6] Pupil tracking with a Hartmann-Shack wavefront sensor
    Arines, Justo
    Prado, Paula
    Bara, Salvador
    JOURNAL OF BIOMEDICAL OPTICS, 2010, 15 (03)
  • [7] Characterization of Hermite-Gaussian beams by using Hartmann-Shack wavefront sensor
    Gao, CQ
    Gao, MW
    Horst, W
    CHINESE PHYSICS LETTERS, 2004, 21 (11) : 2191 - 2194
  • [8] CCD and Hartmann-Shack wavefront sensor to analyze holographic lens resolution
    Lloret, Tomas
    Navarro-Fuster, Victor
    Morales-Vidal, Marta
    Ramirez, Manuel G.
    Marquez, Andres
    Belendez, Augusto
    Pascual, Inmaculada
    HOLOGRAPHY: ADVANCES AND MODERN TRENDS VIII, 2023, 12574
  • [9] Wavefront Sensor For Spatial Scan using the Hartmann-Shack Method
    Souza, Carlos Felipe G.
    Cordeiro, Henrique A.
    de Lima Monteiro, Davies W.
    Crespo, Telson Emmanuel O.
    Abecassis, Ursula V.
    Salles, Luciana P.
    2016 1ST SYMPOSIUM ON INSTRUMENTATION SYSTEMS, CIRCUITS AND TRANSDUCERS (INSCIT), 2016, : 31 - 36
  • [10] Simulation and uncertainty analysis for Hartmann-Shack wavefront sensor
    Chuan, Chung Chang
    Cheng, Chung Lee
    OPTICAL MANUFACTURING AND TESTING VII, 2007, 6671