The Search for Evolutionary Developmental Origins of Aging in Zebrafish: A Novel Intersection of Developmental and Senescence Biology in the Zebrafish Model System

被引:11
|
作者
Kishi, Shuji [1 ]
机构
[1] Scripps Res Inst, Dept Metab & Aging, Jupiter, FL 33458 USA
关键词
RIBOSOMAL-PROTEIN L11; GILFORD-PROGERIA-SYNDROME; DIAMOND-BLACKFAN ANEMIA; SPINAL MUSCULAR-ATROPHY; PLURIPOTENT STEM-CELLS; LAMIN-A/C EXPRESSION; VACUOLAR H+-ATPASE; RNA-POLYMERASE-II; DIETARY RESTRICTION; OXIDATIVE STRESS;
D O I
10.1002/bdrc.20217
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Senescence may be considered the antithesis of early development, but yet there may be factors and mechanisms in common between these two phenomena during the process of aging. We investigated whether any relationship exists between the regulatory mechanisms that function in early development and in senescence using the zebrafish (Danio rerio), a small freshwater fish and a useful model animal for genetic studies. We conducted experiments to isolate zebrafish mutants expressing an apparent senescence phenotype during embryogenesis (embryonic senescence). Some of the genes we thereby identified had already been associated with cellular senescence and chronological aging in other organisms, but many had not yet been linked to these processes. Complete loss-of-function of developmentally essential genes induce embryonic (or larval) lethality, whereas it seems like their partial loss-of-function (i.e., decrease-of-function by heterozygote or hypomorphic mutations) still remains sufficient to go through the early developmental process because of its adaptive plasticity or rather heterozygote advantage. However, in some cases, such partial loss-of-function of genes compromise normal homeostasis due to haploinsufficiency later in adult life having many environmental stress challenges. By contrast, any heterozygote-advantageous genes might gain a certain benefit(s) (much more fitness) by such partial loss-of-function later in life. Physiological senescence may evolutionarily arise from both genetic and epigenetic drifts as well as from losing adaptive developmental plasticity in face of stress signals from the external environment that interacts with functions of multiple genes rather than effects of only a single gene mutation or defect. Previously uncharacterized developmental genes may thus mediate the aging process and play a pivotal role in senescence. Moreover, unexpected senescence-related genes might also be involved in the early developmental process and regulation. We wish to ascertain whether we can identify such genes promptly in a comprehensive manner. The ease of manipulation using the zebrafish system allows us to conduct an exhaustive exploration of novel genes and small molecular compounds that can be linked to the senescence phenotype and thereby facilitates searching for the evolutionary and developmental origins of aging in vertebrates. Birth Defects Research (Part C) 93:229-248, 2011. (C) 2011 Wiley-Liss, Inc.
引用
收藏
页码:229 / 248
页数:20
相关论文
共 50 条
  • [1] Developmental biology of zebrafish
    Dawid, IB
    UNDERSTANDING AND OPTIMIZING HUMAN DEVELOPMENT:: FROM CELLS TO PATIENTS TO POPULATIONS, 2004, 1038 : 88 - 93
  • [2] Using zebrafish models to explore genetic and epigenetic impacts on evolutionary developmental origins of aging
    Kishi, Shuji
    TRANSLATIONAL RESEARCH, 2014, 163 (02) : 123 - 135
  • [3] Special Issue "Zebrafish-A Model System for Developmental Biology Study"
    Maves, Lisa
    JOURNAL OF DEVELOPMENTAL BIOLOGY, 2020, 8 (03)
  • [4] Developmental biology of zebrafish myeloid cells
    Crowhurst, MO
    Layton, JE
    Lieschke, GJ
    INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY, 2002, 46 (04): : 483 - 492
  • [5] Developmental biology - A zebrafish genome project?
    Roush, W
    SCIENCE, 1997, 275 (5302) : 923 - 923
  • [6] Molecular and chemical genetic approaches to developmental origins of aging and disease in zebrafish
    Sasaki, Tomoyuki
    Kishi, Shuji
    BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR BASIS OF DISEASE, 2013, 1832 (09): : 1362 - 1370
  • [7] Zebrafish as a model for study of developmental origins of chronic lung diseases
    Ljujic, Mila
    Varga, Mate
    Bartel, Sabine
    Krauss-Etschmann, Susanne
    Rankov, Aleksandra Divac
    EUROPEAN RESPIRATORY JOURNAL, 2018, 52
  • [8] Developmental biology - Zebrafish embryology builds better model vertebrate
    Roush, W
    SCIENCE, 1996, 272 (5265) : 1103 - 1103
  • [9] Fluorescent proteins in zebrafish cell and developmental biology
    Detrich, H. William, III
    FLUORESCENT PROTEINS, SECOND EDITION, 2008, 85 : 219 - +
  • [10] Developmental biology - Genes from zebrafish screens
    Holder, N
    McMahon, A
    NATURE, 1996, 384 (6609) : 515 - 516