Self-similarity bounds for locally thin set families

被引:2
|
作者
Fachini, E [1 ]
Körner, J [1 ]
Monti, A [1 ]
机构
[1] Univ Rome La Sapienza 1, Dept Comp Sci, I-00198 Rome, Italy
来源
COMBINATORICS PROBABILITY & COMPUTING | 2001年 / 10卷 / 04期
关键词
D O I
10.1017/S0963548301004667
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
A family of subsets of an n-set is k-locally thin if, for every k-tuple of its members, the ground set has at least one element contained in exactly one of them. For k=5 we derive a new exponential upper bound for the maximum size of these families. This implies the same bound for all odd values of k>3. Our proof uses the graph entropy bounding technique to exploit a self-similarity in the structure of the hypergraph associated with such set families.
引用
收藏
页码:309 / 315
页数:7
相关论文
共 50 条
  • [1] Locally thin set families
    Alon, N
    Fachini, E
    Körner, J
    [J]. COMBINATORICS PROBABILITY & COMPUTING, 2000, 9 (06): : 481 - 488
  • [2] SELF-SIMILARITY MAPS FOR THE SET OF UNIMODAL CYCLES
    BERNHARDT, C
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1995, 5 (05): : 1325 - 1330
  • [3] Adaptation bounds for confidence bands under self-similarity
    Armstrong, Timothy B.
    [J]. BERNOULLI, 2021, 27 (02) : 1348 - 1370
  • [4] Self-similarity and Lamperti convergence for families of stochastic processes
    Bent Jørgensen
    José R. Martínez
    Clarice G.B. Demétrio
    [J]. Lithuanian Mathematical Journal, 2011, 51 : 342 - 361
  • [5] SELF-SIMILARITY IN A THIN FILM MUSKAT PROBLEM
    Laurencot, Philippe
    Matioc, Bogdan-Vasile
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2017, 49 (04) : 2790 - 2842
  • [6] SELF-SIMILARITY AND LAMPERTI CONVERGENCE FOR FAMILIES OF STOCHASTIC PROCESSES
    Jorgensen, Bent
    Martinez, Jose R.
    Demetrio, Clarice G. B.
    [J]. LITHUANIAN MATHEMATICAL JOURNAL, 2011, 51 (03) : 342 - 361
  • [7] Interfacial thin films rupture and self-similarity
    Ward, Margaret H.
    [J]. PHYSICS OF FLUIDS, 2011, 23 (06)
  • [8] A better bound for locally thin set families
    Fachini, E
    Körner, J
    Monti, A
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 2001, 95 (02) : 209 - 218
  • [9] SELF-SIMILARITY
    LEWELLEN, GB
    [J]. ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1993, 23 (03) : 1023 - 1040
  • [10] THE THIN-FILM EQUATION CLOSE TO SELF-SIMILARITY
    Seis, Christian
    [J]. ANALYSIS & PDE, 2018, 11 (05): : 1303 - 1342