Numerical self-consistent stellar models of thin disks

被引:5
|
作者
Ujevic, M [1 ]
Letelier, PS [1 ]
机构
[1] Univ Estadual Campinas, Inst Matemat Estat & Comp Cient, Dept Matemat Aplicada, BR-13081970 Campinas, SP, Brazil
关键词
stellar dynamics; methods : numerical; galaxies : general;
D O I
10.1051/0004-6361:20053176
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We find a numerical self-consistent stellar model by finding the distribution function of a thin disk that satisfies simultaneously the Fokker-Planck and Poisson equations. The solution of the Fokker-Planck equation is found by a direct numerical solver using finite differences and a variation of Stone's method. The collision term in the Fokker-Planck equation is found using the local approximation and the Rosenbluth potentials. The resulting diffusion coefficients are explicitly evaluated using a Maxwellian distribution for the field stars. As a paradigmatic example, we apply the numerical formalism to find the distribution function of a Kuzmin-Toomre thin disk. This example is studied in some detail showing that the method applies to a large family of actual galaxies.
引用
收藏
页码:785 / 793
页数:9
相关论文
共 50 条