We develop the non-commutative harmonic space (NHS) analysis to study the problem of solving the nonlinear constraint equations of non-commutative Yang-Mills self-duality in four dimensions. We show that this space, denoted also as NHS(eta, theta), has two SU(2) isovector deformations eta ((ij)) and theta ((ij)) parametrizing, respectively, two non-commutative harmonic subspaces NHS(eta, 0) and NHS(0, theta) used to study the self-dual and anti self-dual noncommutative Yang-Mills solutions. We reformulate the Yang-Mills self-dual constraint equations on NHS(eta, 0) by extending the idea of harmonic analyticity to linearize them. We then give a perturbative self-dual solution recovering the ordinary one. Finally, we present the explicit computation of an exact self-dual solution.
机构:
Univ Modena & Reggio Emilia, Dipartimento Sci Fis Informat & Matemat, Via Campi 213-A, I-41125 Modena, Italy
INFN, Sez Bologna, Via Irnerio 46, I-40126 Bologna, ItalyInst Basic Sci, Ctr Relativist Laser Sci, Gwangju 61005, South Korea
Corradini, Olindo
Edwards, James P.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Michoacana, Inst Fis & Matemat, Edificio C-3,Apdo Postal 2-82, Morelia 58040, Michoacan, MexicoInst Basic Sci, Ctr Relativist Laser Sci, Gwangju 61005, South Korea
Edwards, James P.
Pisani, Pablo
论文数: 0引用数: 0
h-index: 0
机构:
UNLP, CONICET, Inst Fis La Plata, CC 67, RA-1900 La Plata, Buenos Aires, ArgentinaInst Basic Sci, Ctr Relativist Laser Sci, Gwangju 61005, South Korea