Classification of Simple Weight Modules Over the 1-Spatial Ageing Algebra

被引:17
|
作者
Lu, Rencai [1 ]
Mazorchuk, Volodymyr [2 ]
Zhao, Kaiming [3 ,4 ]
机构
[1] Soochow Univ, Dept Math, Suzhou, Peoples R China
[2] Uppsala Univ, Dept Math, SE-75106 Uppsala, Sweden
[3] Wilfrid Laurier Univ, Dept Math, Waterloo, ON N2L 3C5, Canada
[4] Hebei Normal Teachers Univ, Coll Math & Informat Sci, Shijiazhuang 050016, Hebei, Peoples R China
基金
瑞典研究理事会; 加拿大自然科学与工程研究理事会;
关键词
Weight module; Schrodinger algebra; Ageing algebra; Highest weight module; LOCAL SCALE-INVARIANCE; SCHRODINGER INVARIANCE; REPRESENTATIONS; SL(2);
D O I
10.1007/s10468-014-9499-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we use Block's classification of simple modules over the first Weyl algebra to obtain a complete classification of simple weight modules, in particular, of Harish-Chandra modules, over the 1-spatial ageing algebra . Most of these modules have infinite dimensional weight spaces and so far the algebra is the only Lie algebra having simple weight modules with infinite dimensional weight spaces for which such a classification exists. As an application we classify all simple weight modules over the (1+1)-dimensional space-time Schrodinger algebra that have a simple -submodule thus constructing many new simple weight S-modules.
引用
收藏
页码:381 / 395
页数:15
相关论文
共 50 条
  • [1] Classification of Simple Weight Modules Over the 1-Spatial Ageing Algebra
    Rencai Lü
    Volodymyr Mazorchuk
    Kaiming Zhao
    Algebras and Representation Theory, 2015, 18 : 381 - 395
  • [2] Torsion simple modules over the quantum spatial ageing algebra
    Bavula, V. V.
    Lu, T.
    COMMUNICATIONS IN ALGEBRA, 2017, 45 (10) : 4166 - 4189
  • [3] Classification of Simple Weight Modules over the Schrodinger Algebra
    Bavula, V. V.
    Lu, T.
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2018, 61 (01): : 16 - 39
  • [4] The Prime Spectrum and Simple Modules Over the Quantum Spatial Ageing Algebra
    V. V. Bavula
    T. Lu
    Algebras and Representation Theory, 2016, 19 : 1109 - 1133
  • [5] The Prime Spectrum and Simple Modules Over the Quantum Spatial Ageing Algebra
    Bavula, V. V.
    Lu, T.
    ALGEBRAS AND REPRESENTATION THEORY, 2016, 19 (05) : 1109 - 1133
  • [6] Classification of simple weight modules with finite-dimensional weight spaces over the Schrodinger algebra
    Dubsky, Brendan
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 443 : 204 - 214
  • [7] A family of simple weight modules over the Virasoro algebra
    Lu, Rencai
    Zhao, Kaiming
    JOURNAL OF ALGEBRA, 2017, 479 : 437 - 460
  • [8] The prime spectrum of the universal enveloping algebra of the 1-spatial ageing algebra and of U (gl2)
    Bavula, V
    Lu, T.
    ALGEBRA AND DISCRETE MATHEMATICS, 2021, 31 (01): : 1 - 16
  • [9] Prime ideals of the enveloping algebra of the Euclidean algebra and a classification of its simple weight modules
    Bavula, V. V.
    Lu, T.
    JOURNAL OF MATHEMATICAL PHYSICS, 2017, 58 (01)
  • [10] Classification of simple Harish-Chandra modules over the N=1 Ramond algebra
    Cai, Yan-an
    Liu, Dong
    Lu, Rencai
    JOURNAL OF ALGEBRA, 2021, 567 : 114 - 127