Quatsomes for the treatment of Staphylococcus aureus biofilm

被引:26
|
作者
Thomas, Nicky [1 ]
Dong, Dong [2 ,3 ]
Richter, Katharina [2 ]
Ramezanpour, Mahnaz [2 ]
Vreugde, Sarah [2 ]
Thierry, Benjamin [1 ]
Wormald, Peter-John [2 ]
Prestidge, Clive A. [1 ]
机构
[1] Univ S Australia, Ian Wark Res Inst, Adelaide, SA 5095, Australia
[2] Univ Adelaide, ENT Dept 3C, Queen Elizabeth Hosp, Dept Surg Otolaryngol Head & Neck Surg, Woodville South, SA 5011, Australia
[3] Zhengzhou Univ, Affiliated Hosp 1, Dept Rhinol, Zhengzhou 450052, Peoples R China
基金
英国医学研究理事会;
关键词
QUATERNARY AMMONIUM SURFACTANTS; CETYLPYRIDINIUM CHLORIDE; BACTERIAL BIOFILMS; PHOSPHOLIPID LIPOSOMES; STREPTOCOCCUS-MUTANS; CATIONIC LIPOSOMES; DELIVERY-SYSTEMS; RESISTANCE; DIFFUSION; AGENTS;
D O I
10.1039/c4tb01953a
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
The anti-biofilm effect of drug delivery systems composed of the antiseptic quaternary ammonium compound cetylpyridinium chloride (CPC) and cholesterol was evaluated in Staphylococcus aureus biofilm. Self-assembly of CPC/cholesterol to approximately 100 nm CPC-quatsomes was successfully accomplished by a simple sonication/dispersion method over a broad concentration range from 0.5 to 10 mg ml(-1) CPC. CPC-quatsomes showed a dose-dependent anti-biofilm effect, killing >99% of biofilm-associated S. aureus from 5% mg ml(-1) after 10 minutes exposure. Cell toxicity studies with CPC-quatsomes in Nuli-1 cells revealed no adverse effects at all tested CPC concentrations. CPC-quatsomes, therefore, have a promising potential as novel drug delivery systems with "built-in" anti-biofilm activity.
引用
收藏
页码:2770 / 2777
页数:8
相关论文
共 50 条
  • [21] Inhibition characteristics of biofilm structure of Staphylococcus aureus
    Zhang, Liping
    Jin, Mingxiao
    Sun, Meng
    CELLULAR AND MOLECULAR BIOLOGY, 2020, 66 (02) : 204 - 211
  • [22] Staphylococcus aureus CcpA affects biofilm formation
    Seidl, Kati
    Goerke, Christiane
    Woiz, Christiane
    Mack, Dietrich
    Berger-Baechi, Brigitte
    Bischoff, Markus
    INFECTION AND IMMUNITY, 2008, 76 (05) : 2044 - 2050
  • [23] Heparin stimulates Staphylococcus aureus biofilm formation
    Shanks, RMQ
    Donegan, NP
    Graber, ML
    Buckingham, SE
    Zegans, ME
    Cheung, AL
    O'Toole, GA
    INFECTION AND IMMUNITY, 2005, 73 (08) : 4596 - 4606
  • [24] Methicillin resistance and the biofilm phenotype in Staphylococcus aureus
    McCarthy, Hannah
    Rudkin, Justine K.
    Black, Nikki S.
    Gallagher, Laura
    O'Neill, Eoghan
    O'Gara, James P.
    FRONTIERS IN CELLULAR AND INFECTION MICROBIOLOGY, 2015, 5
  • [25] BIOFILM FORMATION IN CLINICAL STAPHYLOCOCCUS AUREUS ISOLATES
    Ahmed, Zeerak Faque
    Ozdemir, Kerem
    Mohammed, Bayar Habeeb
    Ertas, Metin
    Tumen, Ibrahim
    FRESENIUS ENVIRONMENTAL BULLETIN, 2020, 29 (7A): : 6303 - 6314
  • [26] Biofilm formation in Methicillin Resistant Staphylococcus aureus
    Mohamadian, Maryam
    Sadeghifard, Nourkhoda
    Ghafourian, Sobhan
    Pakzad, Iraj
    Badakhsh, Behzad
    GENE REPORTS, 2020, 21
  • [27] The Role of msa in Staphylococcus aureus Biofilm Formation
    Sambanthamoorthy, Karthik
    Schwartz, Antony
    Nagarajan, Vijayaraj
    Elasri, Mohamed O.
    BMC MICROBIOLOGY, 2008, 8 (1)
  • [28] Biofilm formation by Candida albicans and Staphylococcus aureus
    Yang, L.
    Chen, D. Q.
    BASIC & CLINICAL PHARMACOLOGY & TOXICOLOGY, 2019, 125 : 8 - 9
  • [29] The Role of msa in Staphylococcus aureus Biofilm Formation
    Karthik Sambanthamoorthy
    Antony Schwartz
    Vijayaraj Nagarajan
    Mohamed O Elasri
    BMC Microbiology, 8
  • [30] Propionibacterium acnes biofilm A sanctuary for Staphylococcus aureus?
    Tyner, Harmony
    Patel, Robin
    ANAEROBE, 2016, 40 : 63 - 67