Predicting Readiness to Liberate from Mechanical Ventilation Using Machine Learning: Development and Retrospective Validation

被引:0
|
作者
Tandon, P. [1 ]
Cheng, F. [2 ]
Cheetirala, S. N. [2 ]
Parchure, P. [2 ]
Levin, M. [3 ]
Kia, A. [2 ]
机构
[1] Icahn Sch Med Mt Sinai, Pulm Crit Care & Sleep Med, New York, NY 10029 USA
[2] Icahn Sch Med Mt Sinai, Inst Healthcare Delivery Sci, New York, NY 10029 USA
[3] Icahn Sch Med Mt Sinai, Anesthesiol Perioperat & Pain Med, New York, NY 10029 USA
关键词
D O I
暂无
中图分类号
R4 [临床医学];
学科分类号
1002 ; 100602 ;
摘要
引用
收藏
页数:2
相关论文
共 50 条
  • [1] Development and Prospective Validation of a Deep Learning Algorithm for Predicting Need for Mechanical Ventilation
    Shashikumar, Supreeth P.
    Wardi, Gabriel
    Paul, Paulina
    Carlile, Morgan
    Brenner, Laura N.
    Hibbert, Kathryn A.
    North, Crystal M.
    Mukerji, Shibani
    Robbins, Gregory
    Shao, Yu-Ping
    Westover, Brandon
    Nemati, Shamim
    Malhotra, Atul
    CHEST, 2021, 159 (06) : 2264 - 2273
  • [2] The art and science of predicting patient readiness for weaning from mechanical ventilation
    Blackwood, B
    INTERNATIONAL JOURNAL OF NURSING STUDIES, 2000, 37 (02) : 145 - 151
  • [3] Predicting extubation readiness in preterm infants using machine learning
    Brasher, M.
    Wirian, Y.
    Raffay, T. M.
    Bada, H.
    Cunningham, M. D.
    Cheng, Q.
    Abu Jawdeh, E. G.
    AMERICAN JOURNAL OF THE MEDICAL SCIENCES, 2023, 365 : S272 - S272
  • [4] Machine learning for predicting successful extubation in patients receiving mechanical ventilation
    Igarashi, Yutaka
    Ogawa, Kei
    Nishimura, Kan
    Osawa, Shuichiro
    Ohwada, Hayato
    Yokobori, Shoji
    FRONTIERS IN MEDICINE, 2022, 9
  • [5] Predicting Duration of Mechanical Ventilation in Acute Respiratory Distress Syndrome Using Supervised Machine Learning
    Sayed, Mohammed
    Riano, David
    Villar, Jesus
    JOURNAL OF CLINICAL MEDICINE, 2021, 10 (17)
  • [6] Machine learning assessment of myocardial ischemia using angiography: Development and retrospective validation
    Hae, Hyeonyong
    Kang, Soo-Jin
    Kim, Won-Jang
    Choi, So-Yeon
    Lee, June-Goo
    Bae, Youngoh
    Cho, Hyungjoo
    Yang, Dong Hyun
    Kang, Joon-Won
    Lim, Tae-Hwan
    Lee, Cheol Hyun
    Kang, Do-Yoon
    Lee, Pil Hyung
    Ahn, Jung-Min
    Park, Duk-Woo
    Lee, Seung-Whan
    Kim, Young-Hak
    Lee, Cheol Whan
    Park, Seong-Wook
    Park, Seung-Jung
    PLOS MEDICINE, 2018, 15 (11)
  • [7] Predicting postoperative nausea and vomiting using machine learning: a model development and validation study
    Maxim Glebov
    Teddy Lazebnik
    Maksim Katsin
    Boris Orkin
    Haim Berkenstadt
    Svetlana Bunimovich-Mendrazitsky
    BMC Anesthesiology, 25 (1)
  • [8] Development and Validation of Nomogram for Predicting Survival of Primary Liver Cancers Using Machine Learning
    Chen, Rui
    Hou, Beining
    Qiu, Shaotian
    Shao, Shuai
    Yu, Zhenjun
    Zhou, Feng
    Guo, Beichen
    Li, Yuhan
    Zhang, Yingwei
    Han, Tao
    FRONTIERS IN ONCOLOGY, 2022, 12
  • [9] Predicting the Length of Mechanical Ventilation in Acute Respiratory Disease Syndrome Using Machine Learning: The PIONEER Study
    Villar, Jesus
    Gonzalez-Martin, Jesus M.
    Fernandez, Cristina
    Soler, Juan A.
    Ambros, Alfonso
    Pita-Garcia, Lidia
    Fernandez, Lorena
    Ferrando, Carlos
    Arocas, Blanca
    Gonzalez-Vaquero, Myriam
    Anon, Jose M.
    Gonzalez-Higueras, Elena
    Parrilla, Dacil
    Vidal, Anxela
    Fernandez, M. Mar
    Rodriguez-Suarez, Pedro
    Fernandez, Rosa L.
    Gomez-Bentolila, Estrella
    Burns, Karen E. A.
    Szakmany, Tamas
    Steyerberg, Ewout W.
    JOURNAL OF CLINICAL MEDICINE, 2024, 13 (06)
  • [10] Ventilator variables predicting extubation readiness in extremely premature infants with prolonged mechanical ventilation: A retrospective observational study
    Nguyen, Truong An
    Matousek, Josef
    Kubena, Ales
    Resl, Kilian
    Kudrna, Petr
    Dunajova, Klara
    Plavka, Richard
    PEDIATRIC PULMONOLOGY, 2024,