Left-ventricle segmentation in real-time 3D echocardiography using a hybrid active shape model and optimal graph search approach

被引:0
|
作者
Zhang, Honghai [1 ]
Abiose, Ademola K. [2 ]
Campbell, Dwayne N. [2 ]
Sonka, Milan [1 ]
Martins, James B. [2 ]
Wahle, Andreas [1 ]
机构
[1] Univ Iowa, Dept Elect & Comp Engn, Iowa City, IA 52242 USA
[2] Univ Iowa, Dept Internal Med, Iowa City, IA 52242 USA
基金
美国国家卫生研究院;
关键词
Real-time 3D echocardiography; left-ventricular function; active shape model; optimal graph search; HEART-FAILURE; DYSSYNCHRONY;
D O I
10.1117/12.844357
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Quantitative analysis of the left ventricular shape and motion patterns associated with left ventricular mechanical dyssynchrony (LVMD) is essential for diagnosis and treatment planning in congestive heart failure. Real-time 3D echocardiography (RT3DE) used for LVMD analysis is frequently limited by heavy speckle noise or partially incomplete data, thus a segmentation method utilizing learned global shape knowledge is beneficial. In this study, the endocardial surface of the left ventricle (LV) is segmented using a hybrid approach combining active shape model (ASM) with optimal graph search. The latter is used to achieve landmark refinement in the ASM framework. Optimal graph search translates the 3D segmentation into the detection of a minimum-cost closed set in a graph and can produce a globally optimal result. Various information-gradient, intensity distributions, and regional-property terms-are used to define the costs for the graph search. The developed method was tested on 44 RT3DE datasets acquired from 26 LVMD patients. The segmentation accuracy was assessed by surface positioning error and volume overlap measured for the whole LV as well as 16 standard LV regions. The segmentation produced very good results that were not achievable using ASM or graph search alone.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Real-time tracking of the left ventricle in 3D echocardiography using a state estimation approach
    Orderud, Fredrik
    Hansgard, Joger
    Rabben, Stein I.
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2007, PT 1, PROCEEDINGS, 2007, 4791 : 858 - +
  • [2] SHAPE AND MOTION ANALYSIS OF LEFT VENTRICLE DYSSYNCHRONY FROM REAL-TIME 3D ECHOCARDIOGRAPHY
    Zhang, Honghai
    Abiose, Ademola K.
    Campbell, Dwayne N.
    Sonka, Milan
    Martins, James B.
    Wahle, Andreas
    2010 7TH IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO, 2010, : 616 - 619
  • [3] Real-time 3D segmentation of the left ventricle using deformable subdivision surfaces
    Orderud, Fredrik
    Rabben, Stein Inge
    2008 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOLS 1-12, 2008, : 783 - +
  • [4] Robust 3D Active Shape Model for the Segmentation of the Left Ventricle in MRI
    Santiago, Carlos
    Nascimento, Jacinto C.
    Marques, Jorge S.
    PATTERN RECOGNITION AND IMAGE ANALYSIS (IBPRIA 2015), 2015, 9117 : 283 - 290
  • [5] A statistical shape model of the left ventricle from real-time 3D echocardiography and its application to myocardial segmentation of cardiac magnetic resonance images
    Carminati, M. C.
    Piazzese, C.
    Pepi, M.
    Tamborini, G.
    Gripari, P.
    Pontone, G.
    Krause, R.
    Auricchio, A.
    Lang, R. M.
    Caiani, E. G.
    COMPUTERS IN BIOLOGY AND MEDICINE, 2018, 96 : 241 - 251
  • [6] Automatic segmentation of the left ventricle in 3D echocardiography using active appearance models
    van Stralen, M.
    Leung, K. Y. E.
    Voormolen, M. M.
    de Jong, N.
    van der Steen, A. F. W.
    Reiber, J. H. C.
    Bosch, J. G.
    2007 IEEE ULTRASONICS SYMPOSIUM PROCEEDINGS, VOLS 1-6, 2007, : 1480 - +
  • [7] B-spline Explicit Active Tracking of Surfaces (BEATS): Application to real-time 3D segmentation and tracking of the left ventricle in 3D echocardiography
    Barbosa, D.
    Bernard, O.
    Heyde, B.
    Dietenbeck, T.
    Houle, H.
    Friboulet, D.
    D'hooge, J.
    2012 IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM (IUS), 2012, : 224 - 227
  • [8] Real-time 3D left ventricle segmentation and ejection fraction using deep learning
    Smistad, Erik
    Steinsland, Erik Nikolai
    Lovstakken, Lasse
    INTERNATIONAL ULTRASONICS SYMPOSIUM (IEEE IUS 2021), 2021,
  • [9] 3D active shape model matching for left ventricle segmentation in cardiac CT
    van Assen, HC
    van der Geest, RJ
    Danilouchkine, MG
    Lamb, HJ
    Reiber, JHC
    Lelieveldt, BPF
    MEDICAL IMAGING 2003: IMAGE PROCESSING, PTS 1-3, 2003, 5032 : 384 - 393
  • [10] Automatic segmentation of left ventricle in 3D echocardiography using a level set approach
    Wu, H. S.
    Wang, D.
    Shi, L.
    Yu, C. M.
    INTERNATIONAL JOURNAL OF CARDIOLOGY, 2013, 163 : S12 - S13