Neuro-fuzzy modeling with a new hybrid learning

被引:0
|
作者
Amaral, TG [1 ]
Crisóstomo, MM [1 ]
Pires, VF [1 ]
机构
[1] EST Setubal, Inst Politecn Setubal, ISR UC, P-2914508 Setubal, Portugal
关键词
neuro-fuzzy; modeling; hybrid-learning algorithm;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, a neuro-fuzzy modeling approach with a new hybrid-learning algorithm (NF-HLA) is presented. The NF-HLA is built using a feed forward neural network functionally equivalent to a Takagi-Sugeno fuzzy system. At the premise part of the NF-HLA, the parameters of the membership functions are adjusted with the use of the Levenberg-Marquardt algorithm instead of the backpropagation (BP) learning adopted by many existing methods. The consequent parameters are obtained using the. least squares estimates algorithm. The NF-HLA is employed in a static function approximation and in nonlinear system identification. Simulation results demonstrate that a compact and high-performance neuro-fuzzy system can be constructed. Comprehensive comparisons with other approaches show that the proposed approach is superior in terms of learning efficiency and performance.
引用
收藏
页码:882 / 887
页数:6
相关论文
共 50 条
  • [1] An ε-insensitive learning in neuro-fuzzy modeling
    Leski, J
    Henzel, N
    [J]. NEURAL NETWORKS AND SOFT COMPUTING, 2003, : 531 - 536
  • [2] Hybrid learning-based neuro-fuzzy inference system: a new approach for system modeling
    Cheng, K. -H.
    [J]. INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2008, 39 (06) : 583 - 600
  • [3] Hybrid learning neuro-fuzzy approach for complex modeling using asymmetric fuzzy sets
    Li, CS
    Cheng, KH
    Lee, JD
    [J]. ICTAI 2005: 17TH IEEE INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2005, : 397 - 401
  • [4] A Hybrid Neuro-Fuzzy Element: a New Structural Node for Evolving Neuro-Fuzzy Systems
    Hu, Zhengbing
    Tyshchenko, Oleksii K.
    [J]. 2018 IEEE SECOND INTERNATIONAL CONFERENCE ON DATA STREAM MINING & PROCESSING (DSMP), 2018, : 402 - 406
  • [5] A neuro-fuzzy hybrid
    Brubaker, D
    [J]. EDN, 1996, 41 (18) : 181 - &
  • [6] Recurrent neuro-fuzzy hybrid-learning approach to accurate system modeling
    Li, Chunshien
    Cheng, Kuo-Hsiang
    [J]. FUZZY SETS AND SYSTEMS, 2007, 158 (02) : 194 - 212
  • [7] Development of a New Neuro-Fuzzy Hybrid System
    Cho, Young Im
    [J]. IECON 2004: 30TH ANNUAL CONFERENCE OF IEEE INDUSTRIAL ELECTRONICS SOCIETY, VOL 3, 2004, : 3184 - 3189
  • [8] A hybrid algorithm for structure identification of neuro-fuzzy modeling
    Ouyang, CS
    Lee, SJ
    [J]. SMC 2000 CONFERENCE PROCEEDINGS: 2000 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN & CYBERNETICS, VOL 1-5, 2000, : 3611 - 3616
  • [9] Artificial ventilation modeling using neuro-fuzzy hybrid system
    Liu, F.
    Ng, G. S.
    Quek, C.
    Loh, T. F.
    [J]. 2006 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORK PROCEEDINGS, VOLS 1-10, 2006, : 2859 - +
  • [10] NEURO-FUZZY MODELING AND CONTROL
    JANG, JSR
    SUN, CT
    [J]. PROCEEDINGS OF THE IEEE, 1995, 83 (03) : 378 - 406