AN EMPIRICAL EVALUATION OF DIMENSIONALITY REDUCTION USING LATENT SEMANTIC ANALYSIS ON HINDI TEXT

被引:1
|
作者
Krishnamurthi, Karthik [1 ]
Sudi, Ravi Kumar [2 ]
Panuganti, Vijayapal Reddy [3 ]
Bulusu, Vishnu Vardhan [4 ]
机构
[1] SNIST, Dept IT, Hyderabad, India
[2] JPNCE, Dept IT, Mahabubnagar, India
[3] MRCE, Dept CSE, Hyderabad, India
[4] JNTUHCEJ, Dept CSE, Jagitial, India
关键词
Latent Semantic Analysis; Singular Value Decomposition; Dimensionality Reduction; Extractive summary;
D O I
10.1109/IALP.2013.11
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Dimensionality reduction is the process of deriving an approximate representation of a dataset, that can reflect most of the correlations underlying within the dataset. In the context of text processing, dimensionality reduction is used for transforming any text to a precise representation that efficiently identifies the main insights of the original text. LSA (Latent Semantic Analysis) is a technique that is used to find correlations between words and sentences based on the usage of words within the text. This paper addresses the issue of dimensionality reduction in representing relevant data from Hindi text using LSA. An empirical evaluation is performed to find the influence of language complexity and influence of various weighting schemes on dimensionality reduction. The results are presented using the standard measures such as recall, precision and F-score.
引用
收藏
页码:21 / 24
页数:4
相关论文
共 50 条
  • [1] Text summarization using Latent Semantic Analysis
    Ozsoy, Makbule Gulcin
    Alpaslan, Ferda Nur
    Cicekli, Ilyas
    [J]. JOURNAL OF INFORMATION SCIENCE, 2011, 37 (04) : 405 - 417
  • [2] Dimensionality reduction by semantic mapping in text categorization
    Corrêa, RF
    Ludermir, TB
    [J]. NEURAL INFORMATION PROCESSING, 2004, 3316 : 1032 - 1037
  • [3] Automatic Text Summarization Using Latent Semantic Analysis
    Mashechkin, I. V.
    Petrovskiy, M. I.
    Popov, D. S.
    Tsarev, D. V.
    [J]. PROGRAMMING AND COMPUTER SOFTWARE, 2011, 37 (06) : 299 - 305
  • [4] Automatic text summarization using latent semantic analysis
    I. V. Mashechkin
    M. I. Petrovskiy
    D. S. Popov
    D. V. Tsarev
    [J]. Programming and Computer Software, 2011, 37 : 299 - 305
  • [5] KANNADA TEXT SUMMARIZATION USING LATENT SEMANTIC ANALYSIS
    Geetha, J. K.
    Deepamala, N.
    [J]. 2015 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATIONS AND INFORMATICS (ICACCI), 2015, : 1508 - 1512
  • [6] Latent semantic analysis for text categorization using neural network
    Yu, Bo
    Xu, Zong-ben
    Li, Cheng-hua
    [J]. KNOWLEDGE-BASED SYSTEMS, 2008, 21 (08) : 900 - 904
  • [7] Latent semantic analysis for text segmentation
    Choi, FYY
    Wiemer-Hastings, P
    Moore, J
    [J]. PROCEEDINGS OF THE 2001 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING, 2001, : 109 - 117
  • [8] Text summarization using a trainable summarizer and latent semantic analysis
    Yeh, JY
    Ke, HR
    Yang, WP
    Meng, IH
    [J]. INFORMATION PROCESSING & MANAGEMENT, 2005, 41 (01) : 75 - 95
  • [9] Dimensionality Reduction for Text Using LLE
    Chuan He
    Zhe Dong
    Li, Ruifan
    Zhong, Yixin
    [J]. IEEE NLP-KE 2008: PROCEEDINGS OF INTERNATIONAL CONFERENCE ON NATURAL LANGUAGE PROCESSING AND KNOWLEDGE ENGINEERING, 2008, : 451 - 457
  • [10] Latent Semantic Analysis: An Approach to Understand Semantic of Text
    Kherwa, Pooja
    Bansal, Poonam
    [J]. 2017 INTERNATIONAL CONFERENCE ON CURRENT TRENDS IN COMPUTER, ELECTRICAL, ELECTRONICS AND COMMUNICATION (CTCEEC), 2017, : 870 - 874