Background Juniperus Phoenicea (JP) and Calicotome Villosa (CV) are used by Jordanian populations as herbal remedies in traditional medicine. Herein, the phytochemical contents of their methanolic extracts were analyzed and their antioxidant as well as in vitro anti- beta-Galactosidase activities were evaluated; their effect on beta-Galactosidase enzyme kinetics was evaluated and the thermodynamic of the enzyme was determined. Methods The antioxidant activity of JP and CV crude methanolic extracts was evaluated using 1,1-diphenyl,2-picrylhydrazyl (DPPH) free radical scavenging and ferric reducing antioxidant power (FRAP) assays; however, the effect of the plants' crude extracts on beta-Galactosidase activity and kinetics was evaluated in vitro. Moreover, total phenolic, flavonoids, and flavonols content in plants' extracts were determined and expressed in Gallic acid equivalent (mg GAE/g dry extract) or rutin equivalent (mg RE/g dry extract). Results Phytochemical screening of the crude extracts of JP and CV leaves revealed the presence of phenols, alkaloids, flavonoids, terpenoids, anthraquinones, and glycosides. Flavonoids and flavonols contents were significantly higher in JP than in CV (p < 0.05). Furthermore, an analogous phenolic content was detected in both JP and CV methanolic extracts (103.6 vs 99.1 mg GAE/g extract). The ability of JP extract to scavenge DPPH radicals was significantly higher than that of CV extract with IC50 = 11.1 mu g/ml and 15.6 mu g/ml, respectively. However, their extracts revealed relatively similar antioxidant capacities in FRAP assay; their activity was concentration dependent. The JP extract inhibited beta-galactosidase enzyme activity with a significant IC50 value compared to CV extract; they exhibited their inhibitory activities at IC50 values 65 mu g/ml and 700 mu g/ml, respectively. Rutin revealed anti-beta-galactosidase activity at IC50 = 75 mu g/ml. The mode of inhibition of beta-galactosidase by JP, CV, and rutin was non-competitive, mixed, and competitive inhibition, respectively. Thermodynamic and enzyme inactivation kinetics revealed that beta-galactosidase has a half-life time of 108 min at 55 degrees C, activation energy of 208.88 kJ mol(-1) and the inactivation kinetics follows a first-order reaction with k-values 0.0023-0.0862 min(-1) and positive entropy of inactivation ( increment S degrees) values at various temperatures, indicating non-significant processes of aggregation. Conclusions The methanolic extracts of JP and CV possess anti-hyperglycemic and antioxidant activities with potential pharmaceutical applications.