Dust transport in photoelectron layers and the formation of dust ponds on Eros

被引:114
|
作者
Colwell, JE
Gulbis, AAS
Horányi, M
Robertson, S
机构
[1] Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80309 USA
[2] MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA 02139 USA
[3] Univ Colorado, Ctr Integrated Plasma Studies, Boulder, CO 80309 USA
基金
美国国家航空航天局;
关键词
Eros; surfaces; asteroids; regoliths;
D O I
10.1016/j.icarus.2004.11.001
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We investigate the electrostatic transport of charged dust in the photoelectron layer over the dayside surface of an asteroid. Micron-sized dust particles may be levitated above the surface in the photoelectron layer. Horizontal transport within the layer can then lead to net deposition of dust into shadowed regions where the electric held due to the photoelectron layer disappears. We apply a 2D numerical model simulating charged dust dynamics in the near-surface daytime plasma environment of Asteroid 433 Eros to the formation of dust deposits in craters. We find that dust tends to collect in craters and re.,ions of shadow. This electrostatic dust transport mechanisin may contribute to the formation of smooth dust ponds observed by the NEAR-Shoemaker spacecraft at Eros. The size distribution of transported dust depends on the particle density and work function, and the work function of the Surface and solar wind electron temperature and density. With reasonable values for these parameters. pin-sized and smaller particles are levitated at Eros. Micrometeoroid bombardment is not a sufficient Source mechanism for electrostatic transport to create the Eros dust ponds. Laboratory measurements of dust in a plasma sheath show that dust launched off the Surface by direct electrostatic levitation can provide a sufficient Source for transport to produce the observed Eros ponds. (c) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:159 / 169
页数:11
相关论文
共 50 条
  • [1] Electrostatic dust transport on Eros: 3-D simulations of pond formation
    Hughes, Anna L. H.
    Colwell, Joshua E.
    DeWolfe, Alexandria Ware
    ICARUS, 2008, 195 (02) : 630 - 648
  • [2] DUST TRANSPORT AND THE QUESTION OF DESERT LOESS FORMATION
    TSOAR, H
    PYE, K
    SEDIMENTOLOGY, 1987, 34 (01) : 139 - 153
  • [3] The effect of surface topography on the lunar photoelectron sheath and electrostatic dust transport
    Poppe, Andrew R.
    Piquette, Marcus
    Likhanskii, Alexandre
    Horanyi, Mihaly
    ICARUS, 2012, 221 (01) : 135 - 146
  • [4] Dust to dust: Evidence for planet formation?
    Schneider, G
    Hines, DC
    Silverstone, MD
    Weinberger, AJ
    Becklin, EE
    Smith, BA
    ASTROPHYSICAL AGES AND TIME SCALES, 2001, 245 : 121 - 129
  • [5] Formation of the "ponds" on asteroid (433) Eros by fluidization
    Sears, D. W. G.
    Tornabene, L. L.
    Osinski, G. R.
    Hughes, S. S.
    Heldmann, J. L.
    PLANETARY AND SPACE SCIENCE, 2015, 117 : 106 - 118
  • [6] Dust-dust interactions and formation of helical dust structures
    Tsytovich, V
    Gusein-Zade, N
    Morfill, G
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 2004, 32 (02) : 637 - 652
  • [7] Physics of collective dust-dust attraction and dust structure formation
    Tsytovich, VN
    Morfill, GE
    DUSTY PLASMAS IN THE NEW MILLENNIUM, 2002, 649 : 110 - 118
  • [8] Rocket dust storms and detached dust layers in the Martian atmosphere
    Spiga, Aymeric
    Faure, Julien
    Madeleine, Jean-Baptiste
    Maeaettaenen, Anni
    Forget, Francois
    JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 2013, 118 (04) : 746 - 767
  • [9] Cosmic dust formation and dust forming systems
    Sedlmayr, E
    OPTICAL AND INFRARED SPECTROSCOPY OF CIRCUMSTELLAR MATTER, 1999, 188 : 211 - 217
  • [10] Lunar photoelectron sheath and levitation of dust
    Sodha, M. S.
    Mishra, S. K.
    PHYSICS OF PLASMAS, 2014, 21 (09)