Exome Sequencing and the Management of Neurometabolic Disorders

被引:218
|
作者
Tarailo-Graovac, M. [1 ,2 ,5 ]
Shyr, C. [1 ,2 ,5 ]
Ross, C. J. [2 ,3 ,5 ]
Horvath, G. A. [3 ,5 ,7 ]
Salvarinova, R. [3 ,7 ]
Ye, X. C. [1 ,2 ,5 ]
Zhang, L-H [1 ,3 ]
Bhavsar, A. P. [3 ,5 ]
Lee, J. J. Y. [1 ,2 ,5 ]
Droegemoeller, B. I. [1 ,3 ,5 ]
Abdelsayed, M. [16 ]
Alfadhel, M. [17 ]
Armstrong, L. [2 ,5 ]
Baumgartner, M. R. [18 ,19 ]
Burda, P. [18 ,19 ]
Connolly, M. B. [3 ,5 ,8 ]
Cameron, J. [13 ]
Demos, M. [3 ,5 ,8 ]
Dewan, T. [3 ]
Dionne, J. [3 ,5 ,9 ]
Evans, A. M. [21 ]
Friedman, J. M. [2 ,5 ]
Garber, I. [1 ,5 ]
Lewis, S. [2 ,5 ]
Ling, J. [23 ]
Mandal, R. [14 ]
Mattman, A. [6 ]
McKinnon, M. [2 ,5 ]
Michoulas, A. [3 ,8 ]
Metzger, D. [3 ,5 ,10 ]
Ogunbayo, O. A. [21 ]
Rakic, B. [4 ]
Rozmus, J. [3 ,5 ,12 ]
Ruben, P. [16 ]
Sayson, B. [7 ]
Santra, S. [22 ]
Schultz, K. R. [3 ,5 ,12 ]
Selby, K. [3 ,5 ,8 ]
Shekel, P. [21 ]
Sirrs, S. [6 ]
Skrypnyk, C. [24 ]
Superti-Furga, A. [20 ]
Turvey, S. E. [3 ,5 ,11 ]
Van Allen, M. I. [2 ,5 ]
Wishart, D. [14 ,15 ]
Wu, J. [3 ,5 ,12 ,23 ]
Wu, J. [3 ,5 ,12 ,23 ]
Zafeiriou, D. [25 ]
Kluijtmans, L. [26 ]
Wevers, R. A. [26 ]
机构
[1] Univ British Columbia, Ctr Mol Med & Therapeut, Vancouver, BC V6H 3V4, Canada
[2] Univ British Columbia, Dept Med Genet, Vancouver, BC V6H 3V4, Canada
[3] Univ British Columbia, Dept Pediat, Vancouver, BC V6H 3V4, Canada
[4] Univ British Columbia, Dept Pathol & Lab Med, Vancouver, BC V6H 3V4, Canada
[5] Univ British Columbia, Child & Family Res Inst, Vancouver, BC V6H 3V4, Canada
[6] Univ British Columbia, Div Endocrinol, Adult Metab Dis Clin, Vancouver, BC V6H 3V4, Canada
[7] BC Childrens Hosp, Div Biochem Dis, Vancouver, BC, Canada
[8] BC Childrens Hosp, Div Pediat Neurol, Vancouver, BC, Canada
[9] BC Childrens Hosp, Div Pediat Nephrol, Vancouver, BC, Canada
[10] BC Childrens Hosp, Div Pediat Endocrinol, Vancouver, BC, Canada
[11] BC Childrens Hosp, Div Immunol, Vancouver, BC, Canada
[12] BC Childrens Hosp, Michael Cuccione Childhood Canc Res Program, Div Hematol Oncol & Transplantat, Vancouver, BC, Canada
[13] Univ Toronto, Hosp Sick Children, Dept Pathol & Lab Med, Toronto, ON M5G 1X8, Canada
[14] Univ Alberta, Dept Biol & Comp Sci, Edmonton, AB, Canada
[15] Natl Inst Nanotechnol, Edmonton, AB, Canada
[16] Simon Fraser Univ, Dept Biomed Physiol & Kinesiol, Burnaby, BC V5A 1S6, Canada
[17] King Saud Bin Abdulaziz Univ Hlth Sci, King Abdulaziz Med City, Div Genet, Dept Pediat, Riyadh, Saudi Arabia
[18] Univ Childrens Hosp Zurich, Div Metab, Zurich, Switzerland
[19] Univ Childrens Hosp Zurich, Childrens Res Ctr, Zurich, Switzerland
[20] Univ Lausanne, Dept Pediat, Lausanne, Switzerland
[21] Univ Edinburgh, Ctr Integrat Physiol, Edinburgh, Midlothian, Scotland
[22] Birmingham Childrens Hosp, Birmingham, W Midlands, England
[23] Univ Texas Hlth Sci Ctr Houston, Dept Microbiol & Mol Genet, Houston, TX 77030 USA
[24] Arabian Gulf Univ, Al Jawahra Ctr Mol Med & Inherited Disorders, Manama, Bahrain
[25] Aristotle Univ Thessaloniki, Dept Pediat, GR-54006 Thessaloniki, Greece
[26] Radboud Univ Nijmegen, Med Ctr, Dept Lab Med, NL-6525 ED Nijmegen, Netherlands
来源
NEW ENGLAND JOURNAL OF MEDICINE | 2016年 / 374卷 / 23期
关键词
INTELLECTUAL DISABILITY; INFANTILE ONSET; GENE-DISCOVERY; RARE-DISEASE; DEFICIENCY; MUTATIONS; PRESENTS; SPECTRUM;
D O I
10.1056/NEJMoa1515792
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
BACKGROUND Whole-exome sequencing has transformed gene discovery and diagnosis in rare diseases. Translation into disease-modifying treatments is challenging, particularly for intellectual developmental disorder. However, the exception is inborn errors of metabolism, since many of these disorders are responsive to therapy that targets pathophysiological features at the molecular or cellular level. METHODS To uncover the genetic basis of potentially treatable inborn errors of metabolism, we combined deep clinical phenotyping (the comprehensive characterization of the discrete components of a patient's clinical and biochemical phenotype) with whole-exome sequencing analysis through a semiautomated bioinformatics pipeline in consecutively enrolled patients with intellectual developmental disorder and unexplained metabolic phenotypes. RESULTS We performed whole-exome sequencing on samples obtained from 47 probands. Of these patients, 6 were excluded, including 1 who withdrew from the study. The remaining 41 probands had been born to predominantly nonconsanguineous parents of European descent. In 37 probands, we identified variants in 2 genes newly implicated in disease, 9 candidate genes, 22 known genes with newly identified phenotypes, and 9 genes with expected phenotypes; in most of the genes, the variants were classified as either pathogenic or probably pathogenic. Complex phenotypes of patients in five families were explained by coexisting monogenic conditions. We obtained a diagnosis in 28 of 41 probands (68%) who were evaluated. A test of a targeted intervention was performed in 18 patients (44%). CONCLUSIONS Deep phenotyping and whole-exome sequencing in 41 probands with intellectual developmental disorder and unexplained metabolic abnormalities led to a diagnosis in 68%, the identification of 11 candidate genes newly implicated in neurometabolic disease, and a change in treatment beyond genetic counseling in 44%. (Funded by BC Children's Hospital Foundation and others.)
引用
收藏
页码:2246 / 2255
页数:10
相关论文
共 50 条
  • [1] Diagnostic exome in neurometabolic disorders
    Beck-Woedl, S.
    Laugwitz, L.
    Buchert, R.
    Grimmel, M.
    Sturm, M.
    Grasshoff, U.
    Riess, O.
    Haack, T.
    EUROPEAN JOURNAL OF HUMAN GENETICS, 2019, 27 : 1350 - 1350
  • [2] Exome sequencing for neurological disorders
    Vance, J.
    Tekin, M.
    JOURNAL OF THE NEUROLOGICAL SCIENCES, 2017, 381 : 21 - 21
  • [3] Exome sequencing applied to monogenic disorders
    Criqui, Audrey
    Baulande, Sylvain
    M S-MEDECINE SCIENCES, 2010, 26 (05): : 452 - 454
  • [4] Improving Exome Sequencing for Neurodevelopmental Disorders
    Berger, Seth I.
    JAMA NETWORK OPEN, 2025, 8 (03)
  • [5] Clinical exome sequencing in muscular disorders
    Peterlin, B.
    Leonardis, L.
    Babic, I.
    Osredkar, D.
    Maver, A.
    EUROPEAN JOURNAL OF NEUROLOGY, 2017, 24 : 422 - 422
  • [6] Diagnostic exome sequencing in movement disorders
    Kamsteeg, E. J.
    Gilissen, C.
    Neveling, K.
    de Reuver, R.
    van de Warrenburg, B.
    Willemsen, M.
    Vermeer, S.
    Brunner, H.
    Veltman, J.
    Nelen, M.
    Scheffer, H.
    MOVEMENT DISORDERS, 2013, 28 : S395 - S395
  • [7] The evolving role of whole-exome sequencing in the management of disorders of sex development
    Tenenbaum-Rakover, Yardena
    Admoni, Osnat
    Elias-Assad, Ghadir
    London, Shira
    Noufi-Barhoum, Marie
    Ludar, Hanna
    Almagor, Tal
    Zehavi, Yoav
    Sultan, Charles
    Bertalan, Rita
    Bashamboo, Anu
    McElreavey, Kenneth
    ENDOCRINE CONNECTIONS, 2021, 10 (06): : 620 - 629
  • [8] Exome sequencing for neurodevelopmental disorders and the effect on patient management - a single center experience
    Weiss, Karin
    Hershkovitz, Tova
    Ekhilevitch, Nina
    Zaid, Rinat
    Mory, Adi
    Feldman, Hagit Baris
    Paperna, Tamar
    MOLECULAR GENETICS AND METABOLISM, 2021, 132 : S114 - S115
  • [9] Impact of next-generation sequencing on diagnosis and management of neurometabolic disorders: current advances and future perspectives
    Tarailo-Graovac, Maja
    Wasserman, Wyeth W.
    Van Karnebeek, Clara D. M.
    EXPERT REVIEW OF MOLECULAR DIAGNOSTICS, 2017, 17 (04) : 307 - 309
  • [10] Neurometabolic disorders
    Ashok Panagariya
    Vinay Agarwal
    Indian Journal of Clinical Biochemistry, 2007, 22 (2)