Transmembrane domains control exclusion of membrane proteins from clathrin-coated pits

被引:23
|
作者
Mercanti, Valentina [1 ,2 ]
Marchetti, Anna [1 ]
Lelong, Emmanuelle [1 ]
Perez, Franck [2 ]
Orci, Lelio [1 ]
Cosson, Pierre [1 ]
机构
[1] Ctr Med Univ Geneva, Dept Physiol Cellulaire & Metab, CH-1211 Geneva 4, Switzerland
[2] Inst Curie, CNRS, UMR 144, F-75005 Paris, France
基金
瑞士国家科学基金会;
关键词
Transmembrane domains; Clathrin; Endocytosis; Exclusion; Vesicles; Sorting; GPI-ANCHORED PROTEINS; ENDOPLASMIC-RETICULUM; GOLGI PROTEIN; POLAR RESIDUES; CELL-SURFACE; RETENTION; ENDOCYTOSIS; DEGRADATION; ENDOSOMES; TRANSPORT;
D O I
10.1242/jcs.073031
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Efficient sorting of proteins is essential to allow transport between intracellular compartments while maintaining their specific composition. During endocytosis, membrane proteins can be concentrated in endocytic vesicles by specific interactions between their cytoplasmic domains and cytosolic coat proteins. It is, however, unclear whether they can be excluded from transport vesicles and what the determinants for this sorting could be. Here, we show that in the absence of cytosolic sorting signals, transmembrane domains control the access of surface proteins to endosomal compartments. They act in particular by determining the degree of exclusion of membrane proteins from endocytic clathrin-coated vesicles. When cytosolic endocytosis signals are present, it is the combination of cytosolic and transmembrane determinants that ultimately controls the efficiency with which a given transmembrane protein is endocytosed.
引用
收藏
页码:3329 / 3335
页数:7
相关论文
共 50 条
  • [1] EXCLUSION OF ERYTHROCYTE-SPECIFIC MEMBRANE-PROTEINS FROM CLATHRIN-COATED PITS DURING DIFFERENTIATION OF HUMAN ERYTHROLEUKEMIC CELLS
    MARSHALL, LM
    THURESONKLEIN, A
    HUNT, RC
    JOURNAL OF CELL BIOLOGY, 1984, 98 (06): : 2055 - 2063
  • [2] Nucleation of clathrin-coated pits: "membrane sculptors" at work
    Boucrot, Emmanuel
    McMahon, Harvey T.
    M S-MEDECINE SCIENCES, 2011, 27 (02): : 122 - 125
  • [3] Understanding living clathrin-coated pits
    Rappoport, J
    Simon, S
    Benmerah, A
    TRAFFIC, 2004, 5 (05) : 327 - 337
  • [4] Clathrin-Coated Pits Form from Elastically Loaded Clathrin Lattices
    Tagiltsev, Grigory
    Scheuring, Simon
    BIOPHYSICAL JOURNAL, 2020, 118 (03) : 403A - 403A
  • [5] How clathrin-coated pits control nanoparticle avidity for cells
    Zimmer, Oliver
    Goepferich, Achim
    NANOSCALE HORIZONS, 2023, 8 (02) : 256 - 269
  • [6] Sliding doors: clathrin-coated pits or caveolae?
    Felberbaum-Corti, M
    Van der Goot, FG
    Gruenberg, J
    NATURE CELL BIOLOGY, 2003, 5 (05) : 382 - 384
  • [7] Sliding doors: clathrin-coated pits or caveolae?
    Michela Felberbaum-Corti
    Françoise Gisou Van Der Goot
    Jean Gruenberg
    Nature Cell Biology, 2003, 5 : 382 - 384
  • [8] Clathrin-coated pits: vive la difference?
    Benmerah, Alexandre
    Lamaze, Christophe
    TRAFFIC, 2007, 8 (08) : 970 - 982
  • [9] Curvature of clathrin-coated pits driven by epsin
    Marijn G. J. Ford
    Ian G. Mills
    Brian J. Peter
    Yvonne Vallis
    Gerrit J. K. Praefcke
    Philip R. Evans
    Harvey T. McMahon
    Nature, 2002, 419 : 361 - 366
  • [10] Curvature of clathrin-coated pits driven by epsin
    Ford, MGJ
    Mills, IG
    Peter, BJ
    Vallis, Y
    Praefcke, GJK
    Evans, PR
    McMahon, HT
    NATURE, 2002, 419 (6905) : 361 - 366