Transfer Learning for Micro-expression Recognition based on the Difference Key Frame Images

被引:0
|
作者
Xie, Zhihua [1 ]
Wang, Le [1 ]
Shi, Ling [1 ]
Fan, Jiawei [1 ]
Cheng, Sijia [1 ]
机构
[1] Jiangxi Sci & Technol Normal Univ, Key Lab Opt Elect & Commun, Nanchang, Jiangxi, Peoples R China
关键词
Micro-expression Recognition; Deep Learning; Transfer learning; Difference Images; SSIM;
D O I
10.1117/12.2611665
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Micro-expression, revealing the true emotions and motives, attracts extraordinary attention on automatic facial micro-expression recognition (MER). The main challenge of MER is large-scale datasets unavailable to support deep learning training. To this end, this paper proposes an end-to-end transfer model for facial MER based on the difference images. Compared with micro-expression dataset, macro-expression dataset has more samples and is easy to train for deep neural network. Thus, we pre-train the resnet-18 network on relatively large expression datasets to get the good initial backbone module. Then, the difference images based on adaptive key frame is applied to get MER related feature representation for the module input. Finally, the preprocessing difference images are feed into the pre-trained resent-18 network for fine-tuning. Consequently, the proposed method achieves the recognition rates of 74.39% and 76.22% on the CASME2 and SMIC databases, respectively. The experimental results show that the difference image between the onset and key frame can improve the transfer training performance on resnet-18, the proposed MER method outperforms the methods based on traditional hand-crafted features and deep neural networks.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Facial Micro-expression Recognition based on the Local Region of the Key Frame
    Zhong, Wenjun
    Yu, Xinhe
    Shi, Ling
    Xie, Zhihua
    MIPPR 2019: PATTERN RECOGNITION AND COMPUTER VISION, 2020, 11430
  • [2] A Review of Micro-expression Recognition based on Deep Learning
    Zhang, He
    Zhang, Hanling
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [3] Dual-Cross Patterns with RPCA of Key Frame for Facial Micro-expression Recognition
    Yu, Xinhe
    Xie, Zhihua
    Zong, Wenjun
    IMAGE AND GRAPHICS, ICIG 2019, PT II, 2019, 11902 : 750 - 759
  • [4] Cross-database micro-expression recognition based on transfer double sparse learning
    Jiateng Liu
    Yuan Zong
    Wenming Zheng
    Multimedia Tools and Applications, 2022, 81 : 43513 - 43530
  • [5] Cross-database micro-expression recognition based on transfer double sparse learning
    Liu, Jiateng
    Zong, Yuan
    Zheng, Wenming
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (30) : 43513 - 43530
  • [6] Lightweight ViT Model for Micro-Expression Recognition Enhanced by Transfer Learning
    Liu, Yanju
    Li, Yange
    Yi, Xinhai
    Hu, Zuojin
    Zhang, Huiyu
    Liu, Yanzhong
    FRONTIERS IN NEUROROBOTICS, 2022, 16
  • [7] Micro-expression recognition based on direct learning of graph structure
    Zhang, Lijun
    Zhang, Yifan
    Sun, Xinzhi
    Tanga, Weicheng
    Wang, Xiaomeng
    Li, Zhanshan
    NEUROCOMPUTING, 2025, 619
  • [8] Micro-expression Recognition Based on Deep Mutual Learning Network
    Xie, Zhihua
    Cheng, Sijia
    Fan, Jiawei
    Huang, Peng
    2022 34TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2022, : 751 - 756
  • [9] Micro-expression recognition with supervised contrastive learning
    Zhi, Ruicong
    Hu, Jing
    Wan, Fei
    PATTERN RECOGNITION LETTERS, 2022, 163 : 25 - 31
  • [10] Deep Learning for Micro-Expression Recognition: A Survey
    Li, Yante
    Wei, Jinsheng
    Liu, Yang
    Kauttonen, Janne
    Zhao, Guoying
    IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, 2022, 13 (04) : 2028 - 2046