Solution of multilayer diffusion problems via the Laplace transform

被引:38
|
作者
Rodrigo, Marianito R. [1 ]
Worthy, Annette L. [1 ]
机构
[1] Univ Wollongong, Sch Math & Appl Stat, Wollongong, NSW, Australia
关键词
Multilayer; Diffusion; Laplace transform; Renewal equation; MODEL;
D O I
10.1016/j.jmaa.2016.06.042
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a one-dimensional multilayer diffusion problem subject to nonhomogeneous boundary conditions. Unlike previous results that used a separation of variables technique to solve such problems with homogeneous boundary conditions, here we use a Laplace transform approach. We reformulate the multilayer diffusion problem as a sequence of one-layer diffusion problems with arbitrary time-dependent functions, solve a general one-layer diffusion problem using the Laplace transform, and then use the interface conditions to determine a system of renewal-type equations for the time-dependent functions. Finally, these renewal equations are solved explicitly using the Laplace transform. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:475 / 502
页数:28
相关论文
共 50 条
  • [1] Generalized Laplace-Type Transform Method for Solving Multilayer Diffusion Problems
    Akel, Mohamed
    Elshehabey, Hillal M.
    Ahmed, Ragaa
    JOURNAL OF FUNCTION SPACES, 2022, 2022
  • [2] On the Solution of the Delay Differential Equation via Laplace Transform
    Cimen, Erkan
    Uncu, Sevket
    COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS, 2020, 11 (03): : 379 - 387
  • [3] Solution of Integral Equations Via Laplace ARA Transform
    Qazza, Ahmad
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2023, 16 (02): : 919 - 933
  • [4] A Laplace transform boundary element solution for the biharmonic diffusion equation
    Davies, A. J.
    Crann, D.
    BOUNDARY ELEMENTS AND OTHER MESH REDUCTION METHODS XXVIII, 2006, 42 : 243 - +
  • [5] Laplace transform time domain-decomposition for diffusion problems
    Davies, A. J.
    Crann, D.
    DCABES 2007 PROCEEDINGS, VOLS I AND II, 2007, : 1 - 4
  • [6] Parallel Laplace transform boundary element methods for diffusion problems
    Crann, D
    Davies, AJ
    Mushtaq, J
    BOUNDARY ELEMENTS XX, 1998, 4 : 259 - 268
  • [7] Solution of a fuzzy differential equation with interactivity via Laplace transform
    Bueno Salgado, Silvio Antonio
    de Barros, Laecio Carvalho
    Esmi, Estevao
    Eduardo Sanchez, Daniel
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2019, 37 (02) : 2495 - 2501
  • [8] Numerical Inverse Laplace Transform Methods for Advection-Diffusion Problems
    Kamran, Farman Ali
    Shah, Farman Ali
    Aly, Wael Hosny Fouad
    Aksoy, Hasan M.
    Alotaibi, Fahad
    Mahariq, Ibrahim
    SYMMETRY-BASEL, 2022, 14 (12):
  • [9] A parallel Laplace transform method for diffusion problems with discontinuous boundary conditions
    Davies, AJ
    Crann, D
    Mushtaq, J
    APPLICATIONS OF HIGH-PERFORMANCE COMPUTING IN ENGINEERING VI, 2000, 6 : 3 - 10
  • [10] Analytical Solution of Physical Problems Using Local Fractional Laplace Transform
    Sharma, Neetu
    Mittal, Ekta
    Agarwal, Surendra Kumar
    NEW MATHEMATICS AND NATURAL COMPUTATION, 2024,