A CHARATERIZATION OF COMMUTATORS FOR PARABOLIC SINGULAR INTEGRALS

被引:1
|
作者
Chen, Yanping [2 ]
Ding, Yong [1 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Lab Math & Complex Syst BNU, Minist Educ, Beijing 100875, Peoples R China
[2] Univ Sci & Technol Beijing, Appl Sci Sch, Beijing 100083, Peoples R China
关键词
SPACES; OPERATORS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, the authors give a characterization of the L(P)-boundedness of the commutators for the parabolic singular integrals. More precisely, the authors prove that if b is an element of BMO(phi)(R(n), rho), then the commutator [b, T] is a bounded operator from L(P) (R(n)) to the Orlicz space L(psi)(R(n)), where the kernel function Omega has no any smoothness on the unit sphere S(n-1). Conversely, if assuming on Omega a slight smoothness on S(n-1), then the boundedness of [b,T] from L(P)(R(n)) to L(psi)(R(n)) implies that b is an element of BMO(phi)(R(n), p). The results in this paper improve essentially and extend some known conclusions.
引用
收藏
页码:5 / 25
页数:21
相关论文
共 50 条