Fennec Fox Optimization: A New Nature-Inspired Optimization Algorithm

被引:25
|
作者
Trojovska, Eva [1 ]
Dehghani, Mohammad [1 ]
Trojovsky, Pavel [1 ]
机构
[1] Univ Hradec Kralove, Fac Sci, Dept Math, Hradec Kralove 50003, Czech Republic
来源
IEEE ACCESS | 2022年 / 10卷
关键词
Optimization; Behavioral sciences; Metaheuristics; Search problems; Benchmark testing; Mathematical models; Linear programming; Fennec fox; optimization; nature-inspired; optimization algorithm; metaheuristic; exploration; exploitation; METAHEURISTIC ALGORITHM; GLOBAL OPTIMIZATION; SEARCH; COLONY;
D O I
10.1109/ACCESS.2022.3197745
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper proposes a new nature-based metaheuristic algorithm called Fennec Fox Optimization (FFA), mimicking two natural behaviors of the animal Fennec Fox in nature. Concretely, Fennec's digging ability and escape strategy from wild predators were the fundamental inspiration for the proposed FFA. The mathematical model of FFA is presented in two phases based on imitating these two behaviors. First, the efficiency of FFA was evaluated in the optimization of sixty-eight standard benchmark functions and four engineering design problems. Second, FFA performance is challenged against eight well-known optimization algorithms. The optimization results show that FFA perfectly balances exploration and exploitation in searching for the global optimum. Hence, FFA can provide suitable solutions to optimization problems. The comparison of results indicates the superiority of FFA in most objective functions over competitor algorithms in providing the optimal solution.
引用
收藏
页码:84417 / 84443
页数:27
相关论文
共 50 条
  • [1] Fennec Fox Optimization: A New Nature-Inspired Optimization Algorithm
    Trojovska, Eva
    Dehghani, Mohammad
    Trojovsky, Pavel
    IEEE Access, 2022, 10 : 84417 - 84443
  • [2] Clouded Leopard Optimization: A New Nature-Inspired Optimization Algorithm
    Trojovska, Eva
    Dehghani, Mohammad
    IEEE ACCESS, 2022, 10 : 102876 - 102906
  • [3] Ebola Optimization Search Algorithm: A New Nature-Inspired Metaheuristic Optimization Algorithm
    Oyelade, Olaide Nathaniel
    Ezugwu, Absalom El-Shamir
    Mohamed, Tehnan I. A.
    Abualigah, Laith
    IEEE ACCESS, 2022, 10 : 16150 - 16177
  • [4] Quokka swarm optimization: A new nature-inspired metaheuristic optimization algorithm
    AL-kubaisy, Wijdan Jaber
    AL-Khateeb, Belal
    JOURNAL OF INTELLIGENT SYSTEMS, 2024, 33 (01)
  • [5] AFOX: a new adaptive nature-inspired optimization algorithm
    ALRahhal, Hosam
    Jamous, Razan
    ARTIFICIAL INTELLIGENCE REVIEW, 2023, 56 (12) : 15523 - 15566
  • [6] A new mycorrhized tree optimization nature-inspired algorithm
    Hector Carreon-Ortiz
    Fevrier Valdez
    Soft Computing, 2022, 26 : 4797 - 4817
  • [7] A new mycorrhized tree optimization nature-inspired algorithm
    Carreon-Ortiz, Hector
    Valdez, Fevrier
    SOFT COMPUTING, 2022, 26 (10) : 4797 - 4817
  • [8] A New Discrete Mycorrhiza Optimization Nature-Inspired Algorithm
    Carreon-Ortiz, Hector
    Valdez, Fevrier
    Castillo, Oscar
    AXIOMS, 2022, 11 (08)
  • [9] AFOX: a new adaptive nature-inspired optimization algorithm
    Hosam ALRahhal
    Razan Jamous
    Artificial Intelligence Review, 2023, 56 : 15523 - 15566
  • [10] Hippopotamus optimization algorithm: a novel nature-inspired optimization algorithm
    Amiri, Mohammad Hussein
    Hashjin, Nastaran Mehrabi
    Montazeri, Mohsen
    Mirjalili, Seyedali
    Khodadadi, Nima
    SCIENTIFIC REPORTS, 2024, 14 (01)