Robust Multi-Dimensional Scaling via Outlier-Sparsity Control

被引:0
|
作者
Forero, Pedro A. [1 ]
Giannakis, Georgios B. [1 ]
机构
[1] Univ Minnesota, Dept Elect & Comp Engn, Minneapolis, MN 55455 USA
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Multidimensional scaling (MDS) seeks an embedding of N objects in a p < N dimensional space such that inter-vector distances approximate pair-wise object dissimilarities. Despite their popularity, MDS algorithms are sensitive to outliers, yielding grossly erroneous embeddings even if few outliers contaminate the available dissimilarities. This work introduces a robust MDS approach exploiting the degree of sparsity in the outliers present. Links with compressive sampling lead to a robust MDS solver capable of coping with outliers. The novel algorithm relies on a majorization-minimization (MM) approach to minimize a regularized stress function, whereby an iterative MDS solver involving Lasso operators is obtained. The resulting scheme identifies outliers and obtains the desired embedding at a computational cost comparable to that of non-robust MDS alternatives. Numerical tests illustrate the merits of the proposed algorithm.
引用
收藏
页码:1183 / 1187
页数:5
相关论文
共 50 条
  • [1] Outlier Detection for Robust Multi-Dimensional Scaling
    Blouvshtein, Leonid
    Cohen-Or, Daniel
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2019, 41 (09) : 2273 - 2279
  • [2] Robust Clustering Using Outlier-Sparsity Regularization
    Forero, Pedro A.
    Kekatos, Vassilis
    Giannakis, Georgios B.
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2012, 60 (08) : 4163 - 4177
  • [3] Robust Nonrigid ICP Using Outlier-Sparsity Regularization
    Hontani, Hidekata
    Matsuno, Takamiti
    Sawada, Yoshihide
    [J]. 2012 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2012, : 174 - 181
  • [4] Robust PCA as Bilinear Decomposition With Outlier-Sparsity Regularization
    Mateos, Gonzalo
    Giannakis, Georgios B.
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2012, 60 (10) : 5176 - 5190
  • [5] Texture mapping via spherical multi-dimensional scaling
    Elad, A
    Keller, Y
    Kimmel, R
    [J]. SCALE SPACE AND PDE METHODS IN COMPUTER VISION, PROCEEDINGS, 2005, 3459 : 443 - 455
  • [6] mRSC: Multi-dimensional Robust Synthetic Control
    Amjad, Muhammad
    Misra, Vishal
    Shah, Devavrat
    Shen, Dennis
    [J]. PROCEEDINGS OF THE ACM ON MEASUREMENT AND ANALYSIS OF COMPUTING SYSTEMS, 2019, 3 (02) : 55 - 56
  • [7] MRSC: Multi-dimensional Robust Synthetic Control
    Amjad, Muhammad Jehangir
    Misra, Vishal
    Shah, Devavrat
    Shen, Dennis
    [J]. Performance Evaluation Review, 2019, 47 (01): : 55 - 56
  • [8] Oui! Outlier Interpretation on Multi-dimensional Data via Visual Analytics
    Zhao, Xun
    Cui, Weiwei
    Wu, Yanhong
    Zhang, Haidong
    Qui, Huamin
    Zhang, Dongmei
    [J]. COMPUTER GRAPHICS FORUM, 2019, 38 (03) : 213 - 224
  • [9] Discrete multi-dimensional scaling
    Clouse, DS
    Cottrell, GW
    [J]. PROCEEDINGS OF THE EIGHTEENTH ANNUAL CONFERENCE OF THE COGNITIVE SCIENCE SOCIETY, 1996, : 290 - 294
  • [10] MULTI-DIMENSIONAL SCALING OF EMOTION
    YOSHIDA, M
    KINASE, R
    KUROKAWA, J
    YASHIRO, S
    [J]. JAPANESE PSYCHOLOGICAL RESEARCH, 1970, 12 (02) : 45 - &