The Properties of a class of Higher-dimensional Composite Wavelet Packet Bases

被引:0
|
作者
Li Hongwu [1 ]
Liao Dong [1 ]
机构
[1] Nanyang Normal Univ, Sch Math & Stat, Nanyang 473061, Peoples R China
来源
关键词
Orthogonal; vector-valued wavelet packets; vector-valued scaling functions; bivariate; orthonormal wavelet packet bases; finite group theory; VECTOR-VALUED WAVELETS; MULTIWAVELETS;
D O I
10.4028/www.scientific.net/KEM.439-440.1099
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we introduce a class of vector-valuedwavelet packets of space L(2) (R(d),C(r)), which are generalizations of multivariate wavelet packets. A procedure for constructing a class of biorthogonal vector-valued wavelet packets in higher dimensions is presented and their biorthogonality properties are characterized by virtue of matrix theory, time-frequency analysis method and operator theory. Three biorthogonality formulas regarding these wavelet packets are derived. Moreover, it is shown how to gain new Riesz bases of space L(2)(R(d),C(r)) from these wavelet packets. obtained.
引用
收藏
页码:1099 / 1104
页数:6
相关论文
共 50 条
  • [1] HIGHER-DIMENSIONAL ORTHONORMAL VECTOR-VALUED WAVELET PACKET BASES
    Luo, Ping
    Du, Jian-Gen
    [J]. PROCEEDINGS OF 2008 INTERNATIONAL CONFERENCE ON WAVELET ANALYSIS AND PATTERN RECOGNITION, VOLS 1 AND 2, 2008, : 602 - 606
  • [2] Characteristics of a class of vector-valued non-separable higher-dimensional wavelet packet bases
    Chen Qing-Jiang
    Qu Xiao-Gang
    [J]. CHAOS SOLITONS & FRACTALS, 2009, 41 (04) : 1676 - 1683
  • [3] On the higher-dimensional wavelet frames
    Mu, LH
    Zhang, ZH
    Zhang, PX
    [J]. APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2004, 16 (01) : 44 - 59
  • [4] The Properties of Vector-valued Higher-dimensional Wavelet Packets
    Wang Xiao-feng
    Luo Ping
    [J]. ICNC 2008: FOURTH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION, VOL 4, PROCEEDINGS, 2008, : 272 - +
  • [5] Towards a higher-dimensional MacLane class
    Rippon, PJ
    [J]. MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1996, 119 : 665 - 671
  • [6] A class of higher-dimensional hyperchaotic maps
    Chen Chen
    Kehui Sun
    Shaobo He
    [J]. The European Physical Journal Plus, 134
  • [7] A class of higher-dimensional hyperchaotic maps
    Chen, Chen
    Sun, Kehui
    He, Shaobo
    [J]. EUROPEAN PHYSICAL JOURNAL PLUS, 2019, 134 (08):
  • [8] Topological Properties of a Class of Higher-dimensional Self-affine Tiles
    Deng, Guotai
    Liu, Chuntai
    Ngai, Sze-Man
    [J]. CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2019, 62 (04): : 727 - 740
  • [9] Vanishing theorems, boundedness and hyperbolicity over higher-dimensional bases
    Kovács, SJ
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 131 (11) : 3353 - 3364
  • [10] Asymptotic expansions of fiber integrals over higher-dimensional bases
    Takayama, Shigeharu
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2021, 773 : 67 - 128