A COUPLING BETWEEN A NON-LINEAR 1D COMPRESSIBLE INCOMPRESSIBLE LIMIT AND THE 1D p-SYSTEM IN THE NON SMOOTH CASE

被引:1
|
作者
Colombo, Rinaldo M. [1 ]
Guerra, Graziano [2 ]
机构
[1] Univ Brescia, INdAM Unit DII, Via Branze 38, I-25123 Brescia, Italy
[2] Dipartimento Matemat & Applicaz, Via Roberto Cozzi 55, I-20125 Milan, Italy
关键词
Incompressible limit; compressible Euler equations; hyperbolic conservation laws; EULER EQUATIONS; FLUIDS; LAWS;
D O I
10.3934/nhm.2016.11.313
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider two compressible immiscible fluids in one space dimension and in the isentropic approximation. The first fluid is surrounded and in contact, with the second one. As the sound speed of the first fluid diverges to infinity, we present the proof of rigorous convergence for the fully non linear compressible to incompressible limit of the coupled dynamics of the two fluids. A linear example is considered in detail, where fully explicit computations are possible.
引用
收藏
页码:313 / 330
页数:18
相关论文
共 50 条
  • [1] A coupling between a 1D compressible-incompressible limit and the 1D p-system in the non smooth case
    Guerra, Graziano
    Schleper, Veronika
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2016, 47 (01): : 381 - 396
  • [2] A coupling between a 1D compressible-incompressible limit and the 1D p-system in the non smooth case
    Graziano Guerra
    Veronika Schleper
    Bulletin of the Brazilian Mathematical Society, New Series, 2016, 47 : 381 - 396
  • [3] Uniqueness of the 1D compressible to incompressible limit
    Rinaldo M. Colombo
    Graziano Guerra
    Nonlinear Differential Equations and Applications NoDEA, 2017, 24
  • [4] Uniqueness of the 1D compressible to incompressible limit
    Colombo, Rinaldo M.
    Guerra, Graziano
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2017, 24 (05):
  • [5] NON LINEAR SCHEMES FOR THE HEAT EQUATION IN 1D
    Despres, Bruno
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2014, 48 (01): : 107 - 134
  • [6] Stability and non-linear response of 1D microfluidic-particle streams
    Champagne, Nicolas
    Lauga, Eric
    Bartolo, Denis
    SOFT MATTER, 2011, 7 (23) : 11082 - 11085
  • [7] Load-rate sensitivity in 1D non-linear viscoelastic model
    Kozar, Ivica
    Ozbolt, Josko
    Pecak, Tatjana
    ADVANCES IN FRACTURE AND DAMAGE MECHANICS X, 2012, 488-489 : 731 - +
  • [8] 1D non-linear seismic response analysis of soft soil deposits
    Di Filippo, G.
    Genovese, F.
    Biondi, G.
    Cascone, E.
    EARTHQUAKE GEOTECHNICAL ENGINEERING FOR PROTECTION AND DEVELOPMENT OF ENVIRONMENT AND CONSTRUCTIONS, 2019, 4 : 2389 - 2395
  • [9] THE EXISTENCE AND LIMIT BEHAVIOR OF THE SHOCK LAYER FOR 1D STATIONARY COMPRESSIBLE NON-NEWTONIAN FLUIDS
    Guo, Zhenhua
    Su, Yifan
    Liu, Jinjing
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2023, 21 (01) : 239 - 253
  • [10] THE NON-LINEAR GRAVITATIONAL-INSTABILITY - THE GROWTH OF PERTURBATIONS OF DIFFERENT SCALES IN 1D
    KOTOK, EV
    SHANDARIN, SF
    ASTRONOMICHESKII ZHURNAL, 1988, 65 (04): : 673 - 681