Retrieval of Vegetation Biophysical Parameters Using Gaussian Process Techniques

被引:197
|
作者
Verrelst, Jochem [1 ]
Alonso, Luis [1 ]
Camps-Valls, Gustavo [1 ]
Delegido, Jesus [1 ]
Moreno, Jose [1 ]
机构
[1] Univ Valencia, Image Proc Lab, Paterna 46980, Valencia, Spain
来源
关键词
Chlorophyll; Compact High Resolution Imaging Spectrometer (CHRIS); fractional vegetation cover (FVC); Gaussian processes (GPs); kernel methods; leaf area index (LAI); retrieval; vegetation indices (VIs); LEAF-AREA INDEX; PHOTOCHEMICAL REFLECTANCE INDEX; SUPPORT VECTOR REGRESSION; RADIATION-USE EFFICIENCY; CROP CHLOROPHYLL CONTENT; LIGHT-USE EFFICIENCY; HYPERSPECTRAL DATA; SPECTRAL REFLECTANCE; REMOTE ESTIMATION; BAND;
D O I
10.1109/TGRS.2011.2168962
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
This paper evaluates state-of-the-art parametric and nonparametric approaches for the estimation of leaf chlorophyll content (Chl), leaf area index, and fractional vegetation cover from space. The parametric approach involves comparison of established and generic narrowband vegetation indices (VIs) and the Normalized Area Over reflectance Curve method, which calculates the continuum spectral region sensitive to Chl. However, as not all available bands take part in these spectral algorithms, it remains unclear whether optimal estimations are achieved. Alternatively, the nonparametric approach is based on Gaussian process (GP) techniques and allows inclusion of all bands. GP builds a nonlinear regression as a linear combination of spectra mapped to a high-dimensional space. Moreover, GP provides an indication of the most contributing bands for each parameter, a weight for the most relevant spectra contained in the training data set, and a confidence estimate of the retrieval. GP has previously demonstrated to be competitive in accuracy with support vector regression and neural networks. Results from hyperspectral Compact High Resolution Imaging Spectrometer data over the Spanish Barrax test site show that GP outperformed the VIs in assessing the vegetation properties when using at least four out of the 62 bands. GP identified most contributing bands in the red and red edge and, to a lower extent, in the blue and NIR parts of the spectrum. Since the proposed GP method is able to build robust relationships between the parameter of interest and only a few bands, it is a promising approach for multispectral data as well.
引用
收藏
页码:1832 / 1843
页数:12
相关论文
共 50 条
  • [1] Retrieval of Biophysical Parameters With Heteroscedastic Gaussian Processes
    Lazaro-Gredilla, Miguel
    Titsias, Michalis K.
    Verrelst, Jochem
    Camps-Valls, Gustavo
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2014, 11 (04) : 838 - 842
  • [2] Improving the retrieval of the biophysical parameters of vegetation canopies using the contribution index
    Zhang, Kongwen
    Hu, Baoxin
    Wang, Jian-guo
    Pattey, Elizabeth
    Smith, Anne M.
    [J]. CANADIAN JOURNAL OF REMOTE SENSING, 2011, 37 (06) : 643 - 652
  • [3] Retrieval of biophysical vegetation parameters using simultaneous inversion of high resolution remote sensing imagery constrained by a vegetation index
    A. J. Berjón
    V. E. Cachorro
    P. J. Zarco-Tejada
    A. de Frutos
    [J]. Precision Agriculture, 2013, 14 : 541 - 557
  • [4] Retrieval of biophysical vegetation parameters using simultaneous inversion of high resolution remote sensing imagery constrained by a vegetation index
    Berjon, A. J.
    Cachorro, V. E.
    Zarco-Tejada, P. J.
    de Frutos, A.
    [J]. PRECISION AGRICULTURE, 2013, 14 (05) : 541 - 557
  • [5] Cost-effectiveness of vegetation biophysical parameters retrieval from remote sensing data
    Vuolo, F.
    D'Urso, G.
    Dini, L.
    [J]. REMOTE SENSING FOR AGRICULTURE, ECOSYSTEMS, AND HYDROLOGY VIII, 2006, 6359
  • [6] Cost-effectiveness of vegetation biophysical parameters retrieval from remote sensing data
    Francesco, Vuolo
    Guido, D'Urso
    Luigi, Dini
    [J]. 2006 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-8, 2006, : 1949 - +
  • [7] BIOPHYSICAL PARAMETER RETRIEVAL WITH WARPED GAUSSIAN PROCESSES
    Munoz-Mari, Jordi
    Verrelst, Jochem
    Lazaro-Gredilla, Miguel
    Camps-Valls, Gustau
    [J]. 2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2015, : 13 - 16
  • [8] Joint Gaussian Processes for Biophysical Parameter Retrieval
    Heestermans Svendsen, Daniel
    Martino, Luca
    Campos-Taberner, Manuel
    Javier Garcia-Haro, Francisco
    Camps-Valls, Gustau
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2018, 56 (03): : 1718 - 1727
  • [9] Estimation of biophysical vegetation parameters using the hemispheric chamber method
    Martinez, B.
    Camacho-de Coca, F.
    Garcia-Haro, F. J.
    [J]. REVISTA DE TELEDETECCION, 2006, (26): : 5 - 17
  • [10] Biophysical Variable Retrieval of Silage Maize with Gaussian Process Regression and Hyperparameter Optimization Algorithms
    Akbari, Elahe
    Boloorani, Ali Darvishi
    Verrelst, Jochem
    Pignatti, Stefano
    Samany, Najmeh Neysani
    Soufizadeh, Saeid
    Hamzeh, Saeid
    [J]. REMOTE SENSING, 2023, 15 (14)