Coarse-to-Fine Query Focused Multi-Document Summarization

被引:0
|
作者
Xu, Yumo [1 ]
Lapata, Mirella [1 ]
机构
[1] Univ Edinburgh, Inst Language Cognit & Computat, Sch Informat, 10 Crichton St, Edinburgh EH8 9AB, Scotland
基金
欧洲研究理事会;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We consider the problem of better modeling query-cluster interactions to facilitate query focused multi-document summarization. Due to the lack of training data, existing work relies heavily on retrieval-style methods for assembling query relevant summaries. We propose a coarse-to-fine modeling framework which employs progressively more accurate modules for estimating whether text segments are relevant, likely to contain an answer, and central. The modules can be independently developed and leverage training data if available. We present an instantiation of this framework with a trained evidence estimator which relies on distant supervision from question answering (where various resources exist) to identify segments which are likely to answer the query and should be included in the summary. Our framework(1) is robust across domains and query types (i.e., long vs short) and outperforms strong comparison systems on benchmark datasets.
引用
收藏
页码:3632 / 3645
页数:14
相关论文
共 50 条
  • [1] A Graph Based Query Focused Multi-Document Summarization
    Balaji, J.
    Geetha, T.
    Parthasarathi, Ranjani
    INTERNATIONAL JOURNAL OF INTELLIGENT INFORMATION TECHNOLOGIES, 2014, 10 (01) : 16 - 41
  • [2] Query-Focused Multi-document Summarization Survey
    Alanzi, Entesar
    Alballaa, Safa
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2023, 14 (06) : 822 - 833
  • [3] Using Proximity in Query Focused Multi-document Extractive Summarization
    Li, Sujian
    Zhang, Yu
    Wang, Wei
    Wang, Chen
    COMPUTER PROCESSING OF ORIENTAL LANGUAGES: LANGUAGE TECHNOLOGY FOR THE KNOWLEDGE-BASED ECONOMY, 2009, 5459 : 179 - 188
  • [4] Query-focused Multi-document Summarization Using Cloud Model
    Chen, Jinguang
    He, Tingting
    INFORMATION-AN INTERNATIONAL INTERDISCIPLINARY JOURNAL, 2011, 14 (03): : 951 - 956
  • [5] Applying regression models to query-focused multi-document summarization
    Ouyang, You
    Li, Wenjie
    Li, Sujian
    Lu, Qin
    INFORMATION PROCESSING & MANAGEMENT, 2011, 47 (02) : 227 - 237
  • [6] Query-Focused Multi-document Summarization Based on Concept Importance
    Zheng, Hai-Tao
    Guo, Ji-Min
    Jiang, Yong
    Xia, Shu-Tao
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PAKDD 2016, PT II, 2016, 9652 : 443 - 453
  • [7] Data Augmentation for Abstractive Query-Focused Multi-Document Summarization
    Pasunuru, Ramakanth
    Celikyilmaz, Asli
    Galley, Michel
    Xiong, Chenyan
    Zhang, Yizhe
    Bansal, Mohit
    Gao, Jianfeng
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 13666 - 13674
  • [8] A Novel Contextual Topic Model for Query-focused Multi-document Summarization
    Yang, Guangbing
    2014 IEEE 26TH INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI), 2014, : 576 - 583
  • [9] Coarse-to-Fine Document Ranking for Multi-Document Reading Comprehension with Answer-Completion
    Liu, Hongyu
    Shi, Shumin
    Huang, Heyan
    PROCEEDINGS OF THE 2019 INTERNATIONAL CONFERENCE ON ASIAN LANGUAGE PROCESSING (IALP), 2019, : 407 - 412
  • [10] Review on Query-focused Multi-document Summarization (QMDS) with Comparative Analysis
    Roy, Prasenjeet
    Kundu, Suman
    ACM COMPUTING SURVEYS, 2024, 56 (01)