Transformation to versal deformations of matrices

被引:16
|
作者
Mailybaev, AA [1 ]
机构
[1] Moscow MV Lomonosov State Univ, Inst Mech, Moscow 117192, Russia
关键词
versal deformation; normal form; transformation; Lie algebra; Jordan algebra; reversible matrix;
D O I
10.1016/S0024-3795(01)00346-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the paper versal deformations of matrices are considered. The versal deformation is a matrix family inducing an arbitrary multi-parameter deformation of a given matrix by an appropriate smooth change of parameters and basis. Given a deformation of a matrix, it is suggested to find transformation functions (the change of parameters and the change of basis dependent on parameters) in the form of Taylor series. The general method of construction of recurrent procedures for calculation of coefficients in the Taylor expansions is developed and used for the cases of real and complex matrices, elements of classical Lie and Jordan algebras, and infinitesimally reversible matrices. Several examples are given and studied in detail. Applications of the suggested approach to problems of stability, singularity, and perturbation theories are discussed. (C) 2001 Elsevier Science Inc. All rights reserved.
引用
收藏
页码:87 / 108
页数:22
相关论文
共 50 条
  • [1] TOPOLOGICALLY VERSAL DEFORMATIONS OF MATRICES - CODIMENSION AT MOST 2
    BASS, DW
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1981, 33 (01): : 168 - 180
  • [2] TOPOLOGICALLY VERSAL DEFORMATIONS OF MATRICES - CODIMENSION AT MOST ONE
    BASS, DW
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1977, 16 (DEC): : 553 - 558
  • [3] VERSAL DETERMINANTAL DEFORMATIONS
    SCHAPS, M
    PACIFIC JOURNAL OF MATHEMATICS, 1983, 107 (01) : 213 - 221
  • [4] Approximation of versal deformations
    Conrad, B
    de Jong, AJ
    JOURNAL OF ALGEBRA, 2002, 255 (02) : 489 - 515
  • [5] Versal deformations in orbit spaces
    Puerta, F
    Puerta, X
    Tarragona, S
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2004, 379 : 329 - 343
  • [6] Versal deformations of formal arcs
    Grinberg, M
    Kazhdan, D
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2000, 10 (03) : 543 - 555
  • [7] Versal deformations of Lie algebras
    Fialowski, A
    NONASSOCIATIVE ALGEBRA AND ITS APPLICATIONS, 2000, 211 : 91 - 103
  • [8] Versal deformations of invariant subspaces
    Ferrer, J
    Puerta, F
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2001, 332 (332-334) : 569 - 582
  • [9] Versal deformations of matrix products
    Tetiana Klymchuk
    M. Isabel García-Planas
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2019, 113 : 3741 - 3750
  • [10] Versal Deformations of Leibniz Algebras
    Fialowski, Alice
    Mandal, Ashis
    Mukherjee, Goutam
    JOURNAL OF K-THEORY, 2009, 3 (02) : 327 - 358