Calculated performance of an Auger-suppressed unipolar HgCdTe photodetector for high temperature operation

被引:0
|
作者
Itsuno, Anne M. [1 ]
Phillips, Jamie D. [1 ]
Gilmore, Angelo S. [2 ]
Velicu, Silviu [2 ]
机构
[1] Univ Michigan, Dept Elect Engn & Comp Sci, Ann Arbor, MI 48109 USA
[2] EPIR Technol, Bolingbrook, IL 60440 USA
基金
美国国家科学基金会;
关键词
HgCdTe; NB nu N; hybrid; Auger suppression; infrared photodetector; unipolar; high temperature; nBn; NUMERICAL-ANALYSIS;
D O I
10.1117/12.893732
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The performance of leading HgCdTe p-n junction infrared (IR) device technology is limited by thermal generation-recombination (G-R) mechanisms and material processing challenges associated with achieving low, controllable in-situ p-type doping using molecular beam epitaxy (MBE) growth techniques. These aspects are addressed in the proposed hybrid HgCdTe NB nu N structure which relies on band gap engineered layers to suppress Shockley-Read-Hall (SRH) and Auger G-R processes contributing to performance degradation. The unipolar NB nu N architecture provides the desired advantages of a simplified fabrication process, eliminating p-type doping requirements. Physics-based numerical device simulations incorporating established HgCdTe material parameters and G-R mechanisms are used to study the performance characteristics of a long wavelength infrared (LWIR) NB nu N device with a 12 mu m cut-off wavelength. The calculated results are compared to those values obtained for an LWIR HgCdTe nBn device. Theoretical dark current density (J(dark)) values of the NB nu N device are lower by an order of magnitude or more for temperatures between 50 K and 245 K. Calculated detectivity (D*) values of 2.367 x 10(14) - 2.273 x 10(11) cm Hz(0.5)/W for temperatures ranging from 50 K and 95 K, respectively, are observed in the NB nu N structure.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Design of an Auger-Suppressed Unipolar HgCdTe NBνN Photodetector
    Anne M. Itsuno
    Jamie D. Phillips
    Silviu Velicu
    Journal of Electronic Materials, 2012, 41 : 2886 - 2892
  • [2] Design of an Auger-Suppressed Unipolar HgCdTe NBνN Photodetector
    Itsuno, Anne M.
    Phillips, Jamie D.
    Velicu, Silviu
    JOURNAL OF ELECTRONIC MATERIALS, 2012, 41 (10) : 2886 - 2892
  • [3] Modeling of LWIR HgCdTe auger-suppressed infrared photodiodes under nonequilibrium operation
    Emelie, P. Y.
    Velicu, S.
    Grein, C. H.
    Phillips, J. D.
    Wijewarnasuriya, P. S.
    Dhar, N. K.
    JOURNAL OF ELECTRONIC MATERIALS, 2008, 37 (09) : 1362 - 1368
  • [4] Modeling of LWIR HgCdTe Auger-Suppressed Infrared Photodiodes under Nonequilibrium Operation
    P.Y. Emelie
    S. Velicu
    C.H. Grein
    J.D. Phillips
    P.S. Wijewarnasuriya
    N.K. Dhar
    Journal of Electronic Materials, 2008, 37 : 1362 - 1368
  • [5] Negative diffusion capacitance in Auger-suppressed HgCdTe heterostructure diodes
    Phillips, TJ
    Gordon, NT
    JOURNAL OF ELECTRONIC MATERIALS, 1996, 25 (08) : 1151 - 1156
  • [6] Constraints and performance trade-offs in Auger-suppressed HgCdTe focal plane arrays
    Vallone, Marco
    Goano, Michele
    Bertazzi, Francesco
    Ghione, Giovanni
    Hanna, Stefan
    Eich, Detlef
    Sieck, Alexander
    Figgemeier, Heinrich
    APPLIED OPTICS, 2020, 59 (17) : E1 - E8
  • [7] Optimised high-frequency performance of Auger-suppressed magnetoconcentration photoconductors
    Jaksic, Z
    Djuric, Z
    MICROELECTRONICS JOURNAL, 2000, 31 (11-12): : 981 - 990
  • [8] Predicted Performance Improvement of Auger-Suppressed HgCdTe Photodiodes and p-n Heterojunction Detectors
    Itsuno, Anne M.
    Phillips, Jamie D.
    Velicu, Silviu
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2011, 58 (02) : 501 - 507
  • [9] Defect Analysis in a Long-Wave Infrared HgCdTe Auger-Suppressed Photodiode
    Kopytko, Malgorzata
    Majkowycz, Kinga
    Murawski, Krzysztof
    Sobieski, Jan
    Gawron, Waldemar
    Martyniuk, Piotr
    SENSORS, 2024, 24 (11)
  • [10] Fundamental Limits to Far-Infrared Lasing in Auger-Suppressed HgCdTe Quantum Wells
    Alymov, Georgy
    Rumyantsev, Vladimir
    Morozov, Sergey
    Gayrilenko, Vladimir
    Aleshkin, Vladimir
    Svintsov, Dmitry
    ACS PHOTONICS, 2020, 7 (01) : 98 - 104