Compression-induced apoptosis of nucleus pulposus (NP) cells plays a pivotal role in the pathogenesis of intervertebral disc degeneration (IVDD). Recent studies have shown that the dysregulation of mitochondrial fission and fusion is implicated in the pathogenesis of a variety of diseases. However, its role in and regulatory effects on compression-induced apoptosis of NP cells have not yet been fully elucidated. Heat shock protein 70 (HSP70) is a major cytoprotective heat shock protein, but its physiological role in IVDD, especially its effect on mitochondrial fission and fusion, is still unknown. Herein, we found that compression could induce mitochondrial fission, which ultimately trigger apoptosis of NP cells via the mitochondrial apoptotic pathway. In addition, we identified the cytoprotective effects of HSP70 on NP cells, and we found that promoting the expression of HSP70 could protect NP cells from abnormal mechanical loading in vitro and in vivo. Finally, we showed that HSP70 inhibited compression-induced mitochondrial fission by promoting SIRT3 expression, thereby attenuating mitochondrial dysfunction and the production of reactive oxygen species and ultimately inhibiting the mitochondrial apoptotic pathway in NP cells. In conclusion, our results demonstrated that HSP70 could attenuate compression-induced apoptosis of NP cells by suppressing mitochondrial fission via upregulating SIRT3 expression. Promoting the expression of HSP70 might be a novel strategy for the treatment of IVDD. Intervertebral disc degeneration: Protein protects against compression-induced cell death A so-called chaperone protein that assists other proteins in correctly folding helps to prevent compression-induced cell death in the intervertebral discs responsible for cushioning the spine. Binwu Hu from Huazhong University of Science and Technology, Wuhan, China, and coworkers showed that mitochondria in the cells from the jelly-like substance found in vertebral discs in the spine tended to divide when exposed to abnormal mechanical loading. This fission resulted in cell death. In cell culture experiments and in mice, the researchers found that boosting levels of the molecular chaperone HSP70 (heat shock protein 70) prevented this mitochondrial dysfunction, in part by activating another stress-response protein called SIRT3. The findings point to HSP70 as a promising drug target for addressing intervertebral disc degeneration, a common cause of chronic back pain.