Compositions with the Euler and Carmichael functions

被引:0
|
作者
Banks, WD [1 ]
Luca, F
Saidak, F
Stanica, P
机构
[1] Univ Missouri, Dept Math, Columbia, MO 65211 USA
[2] Univ Nacl Autonoma Mexico, Inst Matemat, Morelia 58089, Michoacan, Mexico
[3] Wake Forest Univ, Dept Math, Winston Salem, NC 27109 USA
[4] Auburn Univ, Dept Math, Montgomery, AL 36124 USA
基金
美国国家科学基金会;
关键词
D O I
10.1007/BF02942044
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let phi and lambda be the Enter and Carmichael functions, respectively. In this paper, we establish lower and upper bounds for the number of positive integers n <= x such that phi(lambda(n)) = lambda(phi(n)). We also study the normal order of the wfunction phi(lambda(n))/lambda(phi(n)).
引用
收藏
页码:215 / 244
页数:30
相关论文
共 50 条
  • [1] Compositions with the euler and carmichael functions
    W. D. Banks
    F. Luca
    F. Saidak
    P. StĂ;nicĂ
    Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 2005, 75 : 215 - 244
  • [2] Divisors of the Euler and Carmichael functions
    Ford, Kevin
    Hu, Yong
    ACTA ARITHMETICA, 2008, 133 (03) : 199 - 208
  • [3] Coincidences in the values of the Euler and Carmichael functions
    Banks, William D.
    Friedlander, John B.
    Luca, Florian
    Pappalardi, Francesco
    Shparlinski, Igor E.
    ACTA ARITHMETICA, 2006, 122 (03) : 207 - 234
  • [4] Roughly squarefree values of the Euler and Carmichael functions
    Banks, WD
    Luca, F
    ACTA ARITHMETICA, 2005, 120 (03) : 211 - 230
  • [5] ON TWO FUNCTIONS ARISING IN THE STUDY OF THE EULER AND CARMICHAEL QUOTIENTS
    Luca, Florian
    Sha, Min
    Shparlinski, Igor E.
    COLLOQUIUM MATHEMATICUM, 2017, 149 (02) : 179 - 192
  • [6] ON CARMICHAEL CONJECTURE CONCERNING THE EULER PHI FUNCTION
    HAGIS, P
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 1986, 5A (03): : 409 - 412
  • [7] ON THE CARMICHAEL RINGS, CARMICHAEL IDEALS AND CARMICHAEL POLYNOMIALS
    Bae, Sunghan
    Hu, Su
    Sha, Min
    COLLOQUIUM MATHEMATICUM, 2023, 171 (01) : 1 - 17
  • [8] SUMMING OF COMPLEX FUNCTIONS OF EULER FUNCTIONS
    ILYASOV, I
    DOKLADY AKADEMII NAUK SSSR, 1968, 178 (03): : 529 - &
  • [9] CARMICHAEL CONJECTURE ON THE EULER FUNCTION IS VALID BELOW 10(10,000,000)
    SCHLAFLY, A
    WAGON, S
    MATHEMATICS OF COMPUTATION, 1994, 63 (207) : 415 - 419
  • [10] COMPOSITIONS OF POROUSCONTINUOUS FUNCTIONS
    Kowalczyk, Stanislaw
    Turowska, Malgorzata
    MATHEMATICA SLOVACA, 2019, 69 (01) : 199 - 212