Evaluation of Functional Network Connectivity in Event-related FMRI Data Based on ICA and Time-frequency Granger Causality

被引:0
|
作者
Havlicek, M. [1 ,2 ]
Jan, J. [1 ]
Calhoun, V. D. [2 ,3 ]
Brazdil, M. [4 ]
Mikl, M. [1 ,4 ]
机构
[1] Brno Univ Technol, Dept Biomed Engn, Kolejni 4, Brno, Czech Republic
[2] Univ New Mexico, Mind Res Network, Albuquerque, NM 87131 USA
[3] Univ New Mexico, Dept Elect & Comp Engn, Albuquerque, NM 87131 USA
[4] St Annes Univ Hosp, Dept Neurol, Brno, Czech Republic
关键词
fMRI; ICA; spectral; Granger; adaptive; BLIND SEPARATION; COMPONENTS;
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
In this article we show that Adaptive Multivariate Autoregressive (AMVAR) modeling accompanied by proper preprocessing is an effective technique for evaluation of spectral Granger causality among functional brain networks identified by independent component analysis from event-related fMRI data.
引用
收藏
页码:716 / 719
页数:4
相关论文
共 50 条
  • [1] Extended Time-frequency Granger Causality for Evaluation of Functional Network Connectivity in Event-related FMRI Data
    Havlicek, M.
    Jan, J.
    Calhoun, V. D.
    Brazdil, M.
    2009 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-20, 2009, : 4440 - +
  • [2] Dynamic Granger causality based on Kalman filter for evaluation of functional network connectivity in fMRI data
    Havlicek, Martin
    Jan, Jiri
    Brazdil, Milan
    Calhoun, Vince D.
    NEUROIMAGE, 2010, 53 (01) : 65 - 77
  • [3] Comparison of Functional Network Connectivity and Granger Causality for Resting State fMRI Data
    Zhang, Ce
    Lin, Qiu-Hua
    Zhang, Chao-Ying
    Hao, Ying-Guang
    Gong, Xiao-Feng
    Cong, Fengyu
    Calhoun, Vince D.
    ADVANCES IN NEURAL NETWORKS, PT II, 2017, 10262 : 559 - 566
  • [4] Applications of granger causality model to connectivity network based on fMRI time series
    Wen, Xiao-Tong
    Zhao, Xiao-Jie
    Yao, Li
    Wu, Xia
    ADVANCES IN NATURAL COMPUTATION, PT 1, 2006, 4221 : 205 - 213
  • [5] Principal component approach for mapping functional connectivity in event-related fMRI
    Niskanen, Eini
    Tarvainen, Mika P.
    Niskanen, Juha-Pekka
    Ranta-aho, Perttu
    Kononen, Mervi
    Soininen, Hilkka
    Karjalainen, Pasi A.
    WORLD CONGRESS ON MEDICAL PHYSICS AND BIOMEDICAL ENGINEERING, VOL 25, PT 4: IMAGE PROCESSING, BIOSIGNAL PROCESSING, MODELLING AND SIMULATION, BIOMECHANICS, 2010, 25 : 1029 - 1032
  • [6] Time-frequency analysis of event-related brain dynamics
    Makeig, S
    Birbaumer, N
    Shen, B
    VonStein, A
    Klimesch, W
    PSYCHOPHYSIOLOGY, 1996, 33 : S6 - S7
  • [7] Time-frequency analysis of event-related brain potentials
    Bianchi, AM
    Leocani, L
    Mainardi, LT
    Comi, G
    Cerutti, S
    PROCEEDINGS OF THE 20TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOL 20, PTS 1-6: BIOMEDICAL ENGINEERING TOWARDS THE YEAR 2000 AND BEYOND, 1998, 20 : 1486 - 1489
  • [8] Developmental change in event-related time-frequency components
    Malone, Stephen M.
    Bernat, Edward M.
    Iacono, William G.
    PSYCHOPHYSIOLOGY, 2007, 44 : S101 - S101
  • [9] A method for using blocked and event-related fMRI data to study "resting state" functional connectivity
    Fair, Damien A.
    Schlaggar, Bradley L.
    Cohen, Alexander L.
    Miezin, Francis M.
    Dosenbach, Nico U. F.
    Wenger, Kristin K.
    Fox, Michael D.
    Snyder, Abraham Z.
    Raichle, Marcus E.
    Petersen, Steven E.
    NEUROIMAGE, 2007, 35 (01) : 396 - 405
  • [10] A Time-Frequency Analysis of Event-Related Desynchronization/Synchronization Based on Gabor Filter
    Niu, Xiaochen
    Wu, Xiaoguang
    Xie, Ping
    Pan, Lei
    2014 11TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA), 2014, : 5179 - 5184