GREEN VERSUS LEMPERT FUNCTIONS: A MINIMAL EXAMPLE

被引:1
|
作者
Thomas, Pascal [1 ]
机构
[1] Univ Toulouse, Inst Math Toulouse, UPS, INSA,UT1,UTM, F-31062 Toulouse, France
关键词
pluricomplex Green function; Lempert function; analytic disks; Schwarz Lemma; PLURICOMPLEX GREEN; POLES;
D O I
10.2140/pjm.2012.257.189
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Lempert function for a set of poles in a domain of C-n at a point z is obtained by taking a certain infimum over all analytic disks going through the poles and the point z; it majorizes the corresponding multipole pluricomplex Green function. Coman proved that both coincide in the case of sets of two poles in the unit ball. We give an example of a set of three poles in the unit ball where this equality fails.
引用
收藏
页码:189 / 197
页数:9
相关论文
共 50 条
  • [1] LIPSCHITZNESS OF THE LEMPERT AND GREEN FUNCTIONS
    Nikolov, Nikolai
    Pflug, Peter
    Thomas, Pascal J.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 137 (06) : 2027 - 2036
  • [2] Pluricomplex Green and Lempert functions for equally weighted poles
    Thomas, PJ
    Van Trao, N
    ARKIV FOR MATEMATIK, 2003, 41 (02): : 381 - 400
  • [3] On the derivatives of the Lempert functions
    Nikolov, Nikolai
    Pflug, Peter
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2008, 187 (03) : 547 - 553
  • [4] On the derivatives of the Lempert functions
    Nikolai Nikolov
    Peter Pflug
    Annali di Matematica Pura ed Applicata, 2008, 187
  • [5] Remarks on Lempert functions of balanced domains
    Nikolai Nikolov
    Peter Pflug
    Monatshefte für Mathematik, 2009, 156 : 159 - 165
  • [6] Remarks on Lempert functions of balanced domains
    Nikolov, Nikolai
    Pflug, Peter
    MONATSHEFTE FUR MATHEMATIK, 2009, 156 (02): : 159 - 165
  • [7] ON MINIMAL THINNESS, REDUCED FUNCTIONS AND GREEN POTENTIALS
    ESSEN, M
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 1993, 36 : 87 - 106
  • [8] Principle of minimal singularity for Green's functions
    Li, Wenliang
    PHYSICAL REVIEW D, 2024, 109 (04)
  • [9] Kobayashi–Royden pseudometric versus Lempert function
    Nikolai Nikolov
    Peter Pflug
    Annali di Matematica Pura ed Applicata, 2011, 190 : 589 - 593
  • [10] Kobayashi-Royden pseudometric versus Lempert function
    Nikolov, Nikolai
    Pflug, Peter
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2011, 190 (04) : 589 - 593